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Abstract 

Background  Segmented regression, a common model for interrupted time series (ITS) analysis, primarily utilizes two 
equation parametrizations. Interpretations of coefficients vary between the two segmented regression parametriza-
tions, leading to occasional user misinterpretations.

Methods  To illustrate differences in coefficient interpretation between two common parametrizations of segmented 
regression in ITS analysis, we derived analytical results and present an illustration evaluating the impact of a smok-
ing regulation policy in Italy using a publicly accessible dataset. Estimated coefficients and their standard errors were 
obtained using two commonly used parametrizations for segmented regression with continuous outcomes. We clari-
fied coefficient interpretations and intervention effect calculations.

Results  Our investigation revealed that both parametrizations represent the same model. However, due to differ-
ences in parametrization, the immediate effect of the intervention is estimated differently under the two approaches. 
The key difference lies in the interpretation of the coefficient related to the binary indicator for intervention imple-
mentation, impacting the calculation of the immediate effect.

Conclusions  Two common parametrizations of segmented regression represent the same model but have different 
interpretations of a key coefficient. Researchers employing either parametrization should exercise caution when inter-
preting coefficients and calculating intervention effects.

Keywords  Observational study, Interrupted time series design, Segmented regression, Healthcare policy evaluation, 
Coefficient interpretation

Background
The interrupted time series (ITS) design is an increas-
ingly popular quasi-experimental design that is used 
to estimate the effectiveness of an intervention when a 
randomized trial is not feasible [1–7]. In an ITS design, 
observations are collected in a time series over a study 
period that includes intervals both before and after the 
introduction of an intervention, and these observations 
are contrasted to estimate the intervention’s effective-
ness. ITS designs have been used widely in health ser-
vices research, for example, in the evaluation of health 
policies and health care quality improvement interven-
tions in real-world settings [2, 8–14].

The most widely used method of analyzing data from 
an ITS design study is segmented regression [1, 2, 4–6, 
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15, 16]. Segmented regression, also known as piecewise 
regression or broken-stick regression, is a method in 
regression analysis in which a series of observations is 
partitioned into intervals and a separate line segment is 
fit to each interval. The theoretical framework for esti-
mating segmented regression dates back to the work of 
Quandt [17, 18]. The use of segmented regression for ITS 
dates back to its application in evaluating cross-sectional 
time series experiments in psychology [19].

There are two common parametrizations for seg-
mented regression applied to ITS analyses, that of Ber-
nal et al. [6, 7] and that of Wagner et al. [4]. Superficially, 
these two parametrizations appear similar, but they have 
important differences that impact the estimation of inter-
vention effects, raising concerns about the potential for 
misinterpretation of results [20]. This paper investigates 
the two different parametrizations and their interpreta-
tions and illustrates the differences in interpretation by 
applying them to a real data set [7].

Methods
Parametrizations of segmented regression
To explain the two common parametrizations of seg-
mented regression for ITS, we consider the setting of a 
single interrupted time series collected from one unit (for 
example, a single clinic) with a continuous outcome vari-
able [3, 7]. The key features of the model equation are a 
variable for continuous time, a binary indicator denoting 
the presence of an intervention, and an outcome measure 
[1–3, 6, 7, 14, 15, 21]. Let T  represent continuous time 
measuring the duration since the study’s initiation, start-
ing from 0, and let δ denote the time at which the inter-
vention is introduced. Xt represents a binary indicator 
denoting the presence or absence of an intervention at 
time t , equal to 0 for T < δ and 1 for T ≥ δ . Let yt denote 
the continuous outcome as measured at time t.

Bernal’s parametrization involves regressing the out-
come yt on T  , Xt , and their interaction [6, 7, 19, 22–25]. 
Bernal’s parametrization [7] is:

In this parametrization, β0 is the intercept in the pre-
intervention interval and represents the mean outcome 
level at the inception of the study ( T = 0 ). β1 is the 
slope during the pre-intervention interval and repre-
sents the mean change in the outcome for a one unit 
increase in time. For the post-intervention interval, 
β0 + βB

2  is the intercept and β1 + β3 is the slope. Note 
that β0 + βB

2  represents the outcome level at time 0 if 

(1)yt = β0 + β1T + βB
2 Xt + β3XtT

(2)=
β0 + β1T ,T < δ

(β0 + βB
2 )+ (β1 + β3)T ,T ≥ δ

we extrapolated the post-intervention regression line 
backwards in time. The coefficients βB

2  and β3 represent 
the differences in intercept and slope between the pre- 
and post-intervention intervals. Thus, this model allows 
for different linear regression models (different inter-
cepts and different slopes) during the pre- and post-
intervention intervals.

Two different aspects of an intervention effect can be 
captured with this segmented regression model [4, 5, 
21, 26, 27]. One aspect is a change in the mean level 
of the outcome at time δ , corresponding to an imme-
diate effect of the intervention on the outcome. The 
other aspect is the change in slopes from pre- to post-
intervention, which represents a longer-term, gradual 
effect of the intervention on the outcome. In Bernal’s 
parametrization, the gradual effect corresponds to the 
change in slopes, which is β3 in Eq. (1). However, the 
immediate effect does not correspond to the difference 
in intercepts ( βB

2 ) [4, 20]. Rather, the immediate effect 
is the difference in means between the pre- and post-
intervention models at the start of the intervention at 
time δ , which can be formulated as:

Hence in Bernal’s parametrization, βB
2  is the differ-

ence in intercepts between the pre- and post-interven-
tion models, that is, the vertical difference between the 
two regression lines at time 0, and the immediate effect 
is given by βB

2 + β3δ.
The parametrization of segmented regression 

advanced by Wagner is the same as Bernal’s parametri-
zation except for the interaction term [4]. In Wagner’s 
parametrization, the interaction is the product of the 
binary intervention indicator and the time elapsed 
since the intervention’s implementation, T − δ . The 
model is:

Under this parametrization, the intercept and slope 
of the pre-intervention model are the same as for Ber-
nal, but the intercept and slope of the post-intervention 
model are β0 + βW

2 − β3δ and β1 + β3 , respectively. 
Thus, the two parametrizations differ in the parametri-
zation of the intercept of the post-intervention model. 
The difference in intercepts between the pre- and 
post-intervention models is βW

2 − β3δ . For interven-
tion effects, β3 represents the gradual effect, as it does 

Change in Levels = (β0 + βB
2 )+ (β1 + β3)δ − (β0 + β1δ)

= βB
2 + β3δ

(3)yt = β0 + β1T + βW
2 Xt + β3Xt(T − δ)

(4)=

{
β0 + β1T ,T < δ

(β0 + βW
2 − β3δ)+ (β1 + β3)T ,T ≥ δ
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in Bernal’s parametrization. However, the immediate 
effect, quantified as the mean change in levels at time 
δ , is given by:

Consequently, in this parametrization, βW
2  captures 

the difference in means at the start of the intervention’s 
implementation. Thus when researchers use Wagner’s 
parametrization, the immediate effect can be directly 
extracted from βW

2 .
It is important to highlight that the intercept and slope 

coefficients for the pre-intervention models in both 
parametrizations are the same. Additionally, the post-
intervention slopes are the same, being represented by 
β1 + β3 in both Eqs. (2) and (4). The intercept terms of 
the two parametrizations are different: β0 + βB

2  in Eq. (2) 
and β0 + βW

2 − β3δ in equation (4). Assuming the post-
intervention intercepts under the two parametrizations 
are equivalent, we can find that:

Hence, despite the differences between the two para-
metrizations, they should give the same estimate of the 
immediate effect of the intervention. In the next section, 
we show the alignment between the two parametriza-
tions through the analytical expressions of the estimated 
coefficients. We summarize the interpretation of coef-
ficients and intervention effects under the two different 
parametrizations in Table 1.

Estimated coefficients
As observed, the parametrizations of segmented 
regression proposed by Wagner et  al. and Bernal et  al. 
have different model equations but correspond to 
the same pre- and post-intervention models. The two 

Change in Levels =
(
β0 + βW

2 − β3δ
)
+ (β1 + β3)δ − (β0 + β1δ)

= βW
2

β0 + βB
2 = β0 + βW

2 − β3δ

βW
2 = βB

2 + β3δ

parametrizations also lead to different design matrices. 
The design matrix for Bernal’s parametrization is

where the upper part of the matrix represents the pre-
intervention period, and the lower part represents the 
post-intervention period. We assume that there are m 
and n observations in the pre- and post-intervention 
periods, respectively, for a total of N = m+ n observa-
tions. The design matrix for Wagner’s parametrization is

Using design matrices XB or XW  , we can obtain the 
ordinary least squares estimates of regression coefficients 
β = [β0,β1,β2,β3]′ by solving the normal equations, 
obtaining β̂ = (XTX)−1XT y where y = [y1, y2, · · · , ym , ym+1, · · · , ym+n]′ 
is the vector of the outcome variable. The covariance 
matrix for β̂ can be obtained as �̂ = σ̂ 2(XTX)−1 where 
σ̂ 2 represents the estimated residual, calculated as 
σ̂ 2 = 1

N−p (y − Xβ̂)
T
(y − Xβ̂) where p indicates the number of 

XB =





1 t1 0 0

1 t2 0 0

1 t3 0 0
...

...
...

...

1 tm 0 0

1 tm+1 1 tm+1

1 tm+2 1 tm+2

...
...

...
...

1 tm+n 1 tm+n





XW =





1 t1 0 0

1 t2 0 0

1 t3 0 0
...

...
...

...

1 tm 0 0

1 tm+1 1 tm+1 − δ

1 tm+2 1 tm+2 − δ
...

...
...

...

1 tm+n 1 tm+n − δ





Table 1  Summary of interpretation of coefficients and intervention effects in segmented regression for interrupted time series 
analysis using parametrizations of Bernal et al. and Wagner et al

Bernal’s parametrization Wagner’s parametrization

Model equation yt = β0 + β1T + βB
2
Xt + β3XtT yt = β0 + β1T + βW

2
Xt + β3Xt(T − δ)

Interpretations Coefficients
Baseline level β0

Pre-intervention trend β1

Difference in intercepts βB
2

βW
2

− β3δ

Immediate effect (change in levels at intervention onset) βB
2
+ β3δ βW

2

Gradual effect (change in slopes after intervention) β3

Post-intervention trend β1 + β3



Page 4 of 8Wang et al. BMC Medical Research Methodology           (2025) 25:98 

columns in the design matrix. We will show the estimates 
of β and � in ordinary algebra rather than matrix algebra.
β0 β1 , and β3  
The estimates of β0, β1 , and β3 take the forms

where β̂3,post represents the post-intervention slope 
such that β̂3,post = β̂1 + β̂3 . The summations j = 1 to m and 
j = m+ 1 to m+ n represent the summation over obser-
vations from the pre- and post-intervention periods, 
respectively. Under both parametrizations, β̂0 represents 
the mean outcome at study initiation and serves as the 
intercept in the pre-intervention model, β̂1 represents the 
pre-intervention slope, and β̂3 represents the difference 
in slopes between the pre- and post-intervention models. 
Note that β̂0 and β̂1 use only information from the pre-
intervention period while β̂3 uses observations from each 
period to estimate a period-specific slope and then takes 
the difference. The estimated variances of these coeffi-
cients are

where tm = 1
m

∑m
j=1 tj and tn = 1

n

∑m+n
j=m+1 tj.

β2

The estimates of β2 values for the two different para-
metrizations are:

β̂B
2 =

(
∑m+n

j=m+1 tj yj )(
∑m+n

j=m+1 tj )−(
∑m+n

j=m+1 yj )(
∑m+n

j=m+1 t
2
j )

(
∑m+n

j=m+1 tj )
2−n(

∑m+n
j=m+1 t

2
j )

− β̂0 = β̂B
2,post − β̂0,

β̂W
2 = β̂B

2 + δβ̂3 =

(
β̂B
2,post + δβ̂3,post

)
−

(
β̂0 + δβ̂1

)
,

 

where β̂B
2,post

 represents the post-intervention intercept 
under Bernal’s parametrization such that β̂B

2,post = β̂0 + β̂B
2
 . β̂B

2  
corresponds to the difference in intercepts between the 
pre- and post-intervention models. On the other hand, 
β̂W
2  corresponds to the difference in the mean outcome at 

the time of intervention implementation. The estimated 
variances for β̂2 for the two parametrizations are

β̂0 =
(
∑m

j=1 tjyj)(
∑m

j=1 tj)−(
∑m

j=1 yj)(
∑m

j=1 t
2
j )

(
∑m

j=1 tj)
2−m(

∑m
j=1 t

2
j )

,

β̂1 =
(
∑m

j=1 tj)(
∑m

j=1 yj)−m(
∑m

j=1 tjyj)

(
∑m

j=1 tj)
2−m(

∑m
j=1 t

2
j )

,

β̂3 =
(
∑m+n

j=m+1 tj)(
∑m+n

j=m+1 yj)−n(
∑m+n

j=m+1 tjyj)

(
∑m+n

j=m+1 tj)
2−n(

∑m+n
j=m+1 t

2
j )

− β̂1,

= β̂3,post − β̂1,

var(β̂0) = σ̂ 2

∑m
j=1 t

2
j

m
∑m

j=1(tj−tm)
2 ,

var(β̂1) = σ̂ 2 1∑m
j=1(tj−tm)

2 ,

var(β̂3) = σ̂ 2

[
1∑m

j=1(tj−tm)
2 +

1∑m+n
j=m+1(tj−tn)

2

]
,

var(β̂
B

2 ) = σ̂ 2

[ ∑m
j=1 t

2
j

m
∑m

j=1(tj−tm)
2 +

∑m+n
j=m+1 t

2
j

n
∑m+n

j=m+1(tj−tn)
2

]
,

var(β̂
W

2 ) = σ̂ 2

[ ∑m
j=1(tj−δ)2

m
∑m

j=1(tj−tm)
2 +

∑m+n
j=m+1(tj−δ)2

n
∑m+n

j=m+1(tj−tn)
2

]
.

Standard errors are obtained as the square root of the 
variances. For estimates of linear combinations of coef-
ficients, such as βB

2 + β3δ and βW
2 − β3δ , the covariance 

between β2 and β3 is also needed to obtain the standard 
error. We omit this formula. All standard errors can be 
calculated in standard software.

Results
Illustration
We illustrate the differences in the two parametriza-
tions using a dataset provided by Barone-Adesi et al. [28] 
and analyzed by Bernal et al. [7]. The objective of Bernal 
et  al.’s study was to assess the effectiveness of a policy 
that banned smoking in all indoor public places in Sicily, 
Italy. The policy implementation began in January 2005. 
The researchers adopted an ITS design and collected 
data between 2002 and 2006 on the standardized rates of 
acute coronary episodes (ACE) in Sicily per month. The 
standardized ACE rates were computed by dividing the 
monthly frequency of ACE hospital admissions in Sicily 
by the age-standardized population per person-year. We 
expressed the outcome as standardized ACE rates per 
1000. There were 36 and 22 observations of standard-
ized ACE rates in the pre- and post-intervention periods, 
respectively. Our focus is on illustrating the two para-
metrizations rather than providing a detailed analysis of 
these data, as was done by Bernal et al. [7]. Hence, we do 
not present a complete analysis.

Table  2 displays estimated coefficients and interven-
tion effects and standard errors calculated as described 
in previous sections. Figure  1 displays the fitted model. 
The supplementary materials include implementation 
details with R code. β0 is the intercept of the pre-inter-
vention model and corresponds to the standardized rate 
of ACE per 1000 in January 2002, estimated as 1.95 (SE 
0.05). β1 is the slope of the pre-intervention model and 
indicates that the standardized rate of ACE per 1000 was 
increasing an estimated 0.01 units (SE 0.002) per month 
during this interval. At the time of intervention onset, it 
is estimated that the standardized rate of ACE per 1000 
had dropped by 0.25 units (SE 0.08), corresponding to an 
immediate intervention effect; the decrease was statisti-
cally significant (p = 0.002). Thereafter, the standardized 
ACE rate per 1000 continued to increase at an estimated 
rate of 0.01per month (SE 0.004). The difference in slopes 
before and after intervention onset was not significantly 
different from zero, indicating no evidence of a gradual 
intervention effect.

The difference in estimates of β2 between the two par-
ametrizations of segmented regression is noteworthy. 
Figure  1 visually illustrates the difference between two 
estimated β2 values. β̂W

2  corresponds to the difference in 
the fitted outcome value at the time of intervention onset 
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between the pre- and post-intervention models (immedi-
ate effect), represented as the vertical distance between 
the two regression lines at that time point. In contrast, 
β̂B
2  is the difference in intercepts between the pre- and 

post-intervention models. In this dataset, the two quanti-
ties have similar values. This is because there is little dif-
ference in slopes between the pre- and post-intervention 
intervals. In data in which the two slopes are different, we 
would expect to see a greater difference between these 
two values.

Discussion
In our investigation of the two common parametrizations 
of segmented regression for ITS, we verified that the coef-
ficients for baseline outcome level, pre-intervention trend, 
and difference in slopes pre- and post-intervention onset 
are the same for both parametrizations. However, the 
interpretation of the coefficient for the binary intervention 
indicator differs between the two parametrizations. Under 
Wagner’s parametrization, this coefficient captures the 
difference in mean outcome between the pre- and post-
intervention models at the time of intervention implemen-
tation, indicating the change-in-level or immediate effect. 
Under Bernal’s parametrization, this coefficient is not the 
immediate effect but rather captures the difference in the 
intercept between the pre- and post-intervention models. 
Unfortunately, this coefficient has sometimes been misin-
terpreted in the literature [20, 29–39].

When employing Bernal’s parametrization in seg-
mented regression, it is important to recognize that 
the immediate effect should be calculated as a combi-
nation of two coefficients, as we have described. Con-
versely, when applying Wagner’s parametrization, the 
coefficient associated with the binary intervention 
indicator can be used as an estimate of the immediate 
effect and to get the difference in intercepts, one needs 

to use a combination of two coefficients. Thus, Bernal’s 
parametrization is more convenient for computing the 
difference in intercepts, while Wagner’s parametriza-
tion is more convenient for immediate effects. Users 
can choose between these parametrizations to tailor 
their estimates. Regardless of the chosen parametri-
zation, both approaches yield the same pre- and post-
intervention models. Both approaches are based on 
linear models, offering a flexible framework that allows 
for addressing potential confounders through methods 
such as covariate adjustment, stratification, subsetting, 
or other approaches. For example, propensity score-
based ITS is discussed by Linden et al. [25].

ITS analysis is most straightforward to apply when a 
single well-defined intervention begins full implemen-
tation at a single well-defined timepoint. Our illustra-
tion, involving a smoking ban with a specific start date, 
meets these criteria. ITS methods have also been applied 
in  situations in which there are multiple exposure peri-
ods; for example, Jeffery et al. (2024), or staggered adop-
tion across multiple units; for example, Antonelli and 
Beck (2023) [40, 41]. Extensions of the standard ITS seg-
mented regression model have been developed for these 
situations. Other extensions involve using a penetration 
variable which quantifies the extent to which the inter-
vention has penetrated or been implemented across the 
relevant unit (Huitema et  al. 2014) [42]. A penetration 
variable allows for a more nuanced, quasi-continuous 
estimate of the treatment effect.

Both of the parametrizations we have discussed have 
limitations. They both hypothesize an outcome change 
immediately after intervention implementation and a 
linear change over time both before and after the inter-
vention implementation. However, these assumptions 
might not accurately represent the dynamics of the study; 
for example, intervention effects can exhibit lagged 
impacts. In such cases, one can consider alternative 

Table 2  Estimated coefficientsa in segmented regression with standard errors (SE) and P-values

a The estimated coefficients were derived from segmented regression, with the model equation representing standardized ACE rates per 1000 regressed on 
continuous time, a binary indicator denoting the presence or absence of intervention implementation, and their interaction term

Interpretations Coefficients Estimate (SE) P-value

Bernal’s parametrization Wagner’s parametrization

Baseline level β0 1.95 (0.05)  < 0.0001

Pre-intervention trend β1 0.01 (0.002)  < 0.0001

Difference in intercepts βB
2

βW
2

− β3δ − 0.29 (0.22) 0.1840

Immediate effect (change in levels 
at intervention onset)

βB
2
+ β3δ βW

2
− 0.25 (0.08) 0.0018

Gradual effect (change in slopes 
after intervention)

β3 0.001 (0.005) 0.8012

Post-intervention trend β1 + β3 0.01 (0.004)  < 0.0001
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parametrizations that incorporate delayed effects or 
include a transition period between pre-intervention 
and post-intervention periods [6, 16]. Numerous techni-
cal issues related to segmented regression, such as auto-
correlation, seasonality, and heterogeneity, have been 
addressed in existing literature [1, 2, 4, 5, 15, 16, 22]. By 
applying segmented regression and selecting appropriate 
parametrizations, users can employ tailored tools to miti-
gate technical issues based on the specifics of their data. 
The last issue to consider in ITS studies relates to the 
setup for causal estimation. Since ITS designs—whether 
with or without control groups—are often utilized when 

randomized trials are infeasible, they are well-suited for 
large-scale observational databases such as electronic 
health records. In this context, causal inference meth-
ods like target trial emulation (TTE) can offer a more 
robust framework by approximating the conditions of 
randomization within an observational study design 
[43, 44]. However, health services, policy research, and 
public health studies frequently rely on population-level 
outcomes over time (e.g., cancer screening rates, health 
insurance enrollment rates), where individual-level data 
may be unavailable or not central to the research ques-
tion [29–35, 37, 39, 45]. When individual-level data are 

Fig. 1  Estimated segmented regression line using the illustration dataset. The scatter points in blue and orange represented the data points 
in the pre- and post-intervention periods, respectively, while the black lines represented the pre- and post-intervention models. The vertical 
black dot-dashed line represented the time point of policy (i.e., intervention) implementation. The black dashed line represented the extension 
of the post-intervention model
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accessible, integrating ITS with TTE can strengthen 
causal inference. This combined approach allows ITS to 
capture population-level intervention or policy effects 
over time, while TTE provides individual-level effect 
estimates, adjusting for a broader range of potential con-
founders [46]. While ITS designs offer valuable insights 
for evaluating interventions and policies in real-world 
settings, careful consideration of causal estimation strate-
gies is essential to enhance the validity of findings. The 
integration of complementary methods, such as TTE 
when feasible, can provide a more comprehensive under-
standing of intervention effects across both population 
and individual levels, ultimately advancing the rigor and 
impact of health services and policy research.

Conclusion
In conclusion, two common segmented regression para-
metrizations in ITS analysis represent the same model, 
yielding identical pre- and post-intervention models but 
distinct coefficient interpretations. Immediate interven-
tion effect calculations differ between parametrizations, 
while gradual intervention effect calculations remain 
consistent. Both parametrizations for segmented regres-
sion can be employed as analytical approaches for ITS 
design, provided the specific nuances and interpretations 
of the coefficients are understood and explained.
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