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Abstract 

Background  Unmeasured confounders pose challenges when observational data are analysed in comparative effec-
tiveness studies. Integrating high-dimensional administrative claims data may help adjust for unmeasured confound-
ers. We determined whether distributed representations can compress high-dimensional administrative claims data 
to adjust for unmeasured confounders.

Method  Using the Japanese Diagnosis Procedure Combination (DPC) database from 1291 hospitals (between April 
2018 and March 2020), we applied the word2vec algorithm to create distributed representations for all medical codes. 
We focused on patients with heart failure (HF) and simulated four risk-adjustment models: 1, no adjustment; 2, adjust-
ing for previously reported confounders; 3, adjusting for the sum of distributed representation weights of administra-
tive claims data on the day of hospitalisation (novel method); and 4, a combination of models 2 and 3. We re-eval-
uated a previous study on the effect of early rehabilitation in patients with HF and compared these risk-adjustment 
methods (models 1–4).

Results  Distributed representations were generated from the data of 15 998 963 in-patients, and 319 581 HF patients 
were identified. In the simulation study, Model 3 reduced the impact of unmeasured confounders and achieved bet-
ter covariate balances than Model 1. Model 4 showed no increase in bias compared with the true model (Model 2) 
and was used as a reference model in the real-world application. When applied to a previous study, models 3 and 4 
showed similar results.

Conclusion  Distributed representation can compress detailed administrative claims data and adjust for unmeasured 
confounders in comparative effectiveness studies.
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Background
The increasing accessibility of large-scale medical obser-
vational data have enabled comparative effectiveness 
studies. As administrative claims data comprise large-
scale medical observational data, mostly in a standard 
format, their value in comparative effectiveness studies 
has increased. However, the lack of patient severity infor-
mation and the resultant unmeasured confounders are a 
major drawback of administrative data [1] that constitute 
a limitation in many epidemiological studies [2, 3]. Thus, 
considerable effort has been expended to collect detailed 
information on confounders from non-administrative 
data sources, such as electronic medical records [4, 5].

Unmeasured confounders have been addressed previ-
ously through various approaches. If appropriate vari-
ables are present, the instrumental variables (IV) method 
can adjust for unmeasured confounders [6–9]. However, 
optimal IV are not always available; in fact, situations 
where appropriate IVs exist are rather rare. Further-
more, the estimated effect represents the Local Aver-
age Treatment Effect (LATE), which is more challenging 
to interpret compared to measures such as the Average 
Treatment Effect (ATE) that is calculated using propen-
sity scores. In contrast, Schneeweiss et  al. proposed the 
high-dimensional propensity score (HDPS) to calculate 
propensity scores from a large number of variables and 
adjust for unmeasured confounders by using them as 
proxy variables [10, 11].

When we focus on a different domain, matching similar 
documents with a huge vocabulary is being challenged in 
the field of natural language processing [12]. For example, 
Mikolov developed the word2vec method, which embeds 
a high-dimensional vocabulary within a fixed k-dimen-
sional matrix using a distributed representation of words 
[13]. This method enables the calculation of the mean-
ing of inter-word distances and has been used to match 
document tasks in the social sciences [14] and medi-
cal research [15–18]. Though Weberpals et al. proposed 
the application of a deep-learning-based autoencoder to 
embed high-dimensional information and risk adjust-
ment [19], there exists a knowledge gap whether embed-
ding high-dimensional information can contribute to the 
adjustment for unmeasured confounders by using this 
embedded high-dimensional information as proxy vari-
ables of unmeasured confounders. We proposed a novel 
method to adapt distributed representations of medical 
records to large-scale, multidimensional administrative 
data to achieve propensity balancing and conduct com-
parative effectiveness studies.

This study aimed to investigate whether embed-
ded medical information could be used to perform 
risk adjustments for administrative claims data. Spe-
cifically, we developed distributed representations of 

administrative claims data and evaluated whether the 
novel method could reduce bias due to unmeasured con-
founders through a simulation study using real-world 
data. Finally, we adapted our new method to a previous 
clinical epidemiology study that examined whether early 
initiation of rehabilitation in patients with heart failure 
(HF) could improve outcomes [20].

Methods
Development of distributed representation
The first step in our research was to develop a distributed 
representation of all codes within the Japanese Diagnosis 
Procedure Combination (DPC) database, the largest Jap-
anese nationwide inpatient database the comprises data 
from 1291 hospitals. For a distributed representation, we 
applied the word2vec algorithm of Mikolov et al. (2013) 
[13] to all inpatient records in DPC data between 1 April 
2018 and 31 March 2020 (details in Supplement 1) that 
contained administrative data and disease-specific sever-
ity information (Supplement 1). To apply the word2vec 
algorithm to non-natural language data, we referred to 
the Medical Concept Embeddings from Medical Claims 
(MCEMC) proposed by Choi et al. [16]. The details of the 
distributed representation learning process are described 
in Supplement 2.

Data source for a simulation study and application 
to real‑world data
With reference to a previous study [20], we extracted 
the records of adult in-patients with HF. The inclusion 
criteria were patients: 1) with an HF diagnosis (ICD10: 
I50$), 2) aged > 20  years, and 3) discharged during the 
study period. The exclusion criteria were patients: 1) dis-
charged on the first day of hospitalisation, 2) undergoing 
major surgery under general anaesthesia, 3) receiving 
mechanical ventilation, intra-aortic balloon pumping, or 
extracorporeal membrane oxygenation on the first day of 
admission, and 4) who started rehabilitation on the first 
day of admission.

Study variables
Referring to a previous study [20], we collected the fol-
lowing patient information from the DPC database: back-
ground information, diagnoses at admission, medications 
prescribed, and procedures performed on the first day of 
admission. We obtained detailed severity information for 
HF patients from discharge summary records and used 
the diagnosis and all medical practice information from 
the first day of admission (study variables are described 
in Supplement 3).
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Using distributed representation for risk adjustment
We used a distributed representation for risk adjust-
ment as follows: We obtained a code list (keys) for each 
patient’s diagnostic information (diagnosis at admis-
sion and comorbidity diagnosis) and medical treatment 
(medications, procedures, and medical supplies) on the 
first day of hospitalisation. Second, fixed length numeric 
value vectors (weights of diagnosis or medical treat-
ment administrative codes) were assigned to these codes. 
Third, the sum of the weights for each patient was com-
puted. Finally, we used the sum as a covariate to deter-
mine the propensity score. We assigned weights to the 
diagnosis and medical treatment administrative codes 
such that codes with stronger relationships would be 
positioned closer together in a 200-dimensional space. 
Consequently, by summing these weights (i.e., taking the 
vector sum), we could assign 200-dimensional vectors 
to patients whose initial diagnoses and treatments were 
similar, ensuring that vectors for comparable patients lay 
near one another. Thereafter, we treated each patient’s 
resulting 200-dimensional vector as a variable represent-
ing their overall initial diagnosis and medical treatment 
status.

We compared the following four risk-adjusted models: 
1 (no risk adjustment and risk differences were obtained), 
2 (propensity score matching based on the variables in 
a previous study, including detailed severity informa-
tion of HF patients), 3 (propensity score matching using 
the sum of embedding weights, with age and sex), and 4 
(merging variables from models 2 and 3). We included a 
200-dimensional vector, representing each patient’s ini-
tial diagnosis and medical treatment status on the day of 
admission, as a covariate in Models 3 and 4.

We performed 1:1 propensity score matching of treat-
ment and control group, using the nearest-neighbour 
method with a calliper of 1% standardised deviation.

Simulation study
We conducted a simulation study to validate the efficacy 
of our method for minimising the unmeasured con-
founding biases. Using random treatment indicators and 
weighted sampling, we created a dataset that mimicked 
the confounding effects and tested each risk-adjustment 
model to determine whether it could correct for con-
founding effects.

The simulation process is as follows: First, we gener-
ated a random treatment-assignment indicator to ensure 
that there was no association between the prognosis and 
treatment assignment (risk difference = 0).

Second, we constructed a prognostic model using 
variables, including disease severity. We set the com-
posite outcome of in-hospital death and dependency on 

activities of daily living (ADLs) at discharge as the pre-
diction target outcome. The risk-adjustment method in 
Model 2 is the true risk-adjustment method used in this 
simulation study (the prognostic model is described in 
Supplement 4). The cohort was divided into quartiles 
of the predicted values (Q1-Q4). Third, equal sampling 
from groups with a 0 treatment indicator (from Step 
1) was performed until 10,000 cases formed the con-
trol cohort. Fourth, for the treatment cohort, we used 
weighted sampling from the groups of Q1-Q4. For the 
cohort that was least likely to have an outcome, we 
sampled 40% of Q1, 30% of Q2, 20% of Q3, and 10% of 
Q4 (0.4, 0.3, 0.2, and 0.1, respectively). For the cohort 
most likely to have the outcome, we sampled 10% from 
Q1, 20% from Q2, 30% from Q3, and 40% from Q4 ( 0.1, 
0.2, 0.3, and 0.4, respectively). We developed ten sam-
pling scenarios between these extremes to create vary-
ing bias intensities.

Finally, the control and treatment cohorts were com-
bined to form the simulation cohort, which was then 
risk-adjusted using models 1–4 to compare the inter-
group differences in prognoses by treatment.

In this simulation, each model was defined as follows: 
Model 1 omitted all confounding variables from the true 
model (incomplete model); Model 2 was the true model 
(complete model); Model 3 omitted all confounding 
variables from the true model but applies a new adjust-
ment method (proposed model); and Model 4 was the 
true model with the new adjustment method addition-
ally applied. We aimed to confirm that Model 4 did not 
exhibit bias amplification when the variables used in 
Model 3 were added to Model 2 (true model).

This process was repeated 100 times for each scenario. 
For each variable, we calculated the intergroup risk dif-
ferences with 95% confidence intervals (CI). As indica-
tors of group balancing, we calculated standardised mean 
differences (SMD) for all variables used in the prognos-
tic model in the second step and assessed the c-statistics 
for the treatments in Model 4 in the propensity-matched 
cohort. On achieving the covariate balance with match-
ing, the c-statistic of the matched cohort was 0.5. We 
summarised the medians and CI of the risk differences 
and probability of coverage with 95% CI, SMD, and 
c-statistics.

Real‑world data application
We evaluated early initiation of mobilisation in patients 
hospitalised with heart failure as described previously 
[20] and early initiation of rehabilitation in in-patients 
with HF after adjusting for disease severity using both 
administrative and detailed patient-severity information 
included in the DPC database.
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Exposure definition
Patients who began rehabilitation within 2 days of hos-
pitalisation were categorised into the exposure group, 
and those starting after the third day were categorised 
as the control group.

Outcome variables
The primary outcome was a combination of in-hospital 
death and ADLs dependency at discharge, measured 
using a Barthel Index ≤ 60. The secondary outcomes 
included in-hospital mortality, combined in-hospital 
death, 90-day post-discharge readmission, and length 
of hospital stay.

Statistical analysis
Descriptive statistics of patient information for the 
early and delayed rehabilitation cases were obtained 
for the pre-matching cohort. The intergroup balance 
was evaluated using SMD [21]. We calculated the dif-
ferences in outcomes between the control and exposure 
groups. CI were obtained using the bootstrap method.

Bootstrap simulation
The estimated risk differences and balance measures for 
each adjustment method were compared with those of 
real-world data bootstrap simulations. We performed 
1000 bootstrap simulations. Owing to computational 
constraints, each bootstrap cohort was drawn from a 
randomly chosen 20% of the study cohort.

To evaluate covariate balancing in each model, we 
calculated the SMD of each variable and the c-statistics 
of Model 4 in the propensity score-matched cohorts. 
To evaluate the validity of these risk-adjustment meth-
ods, we obtained the intergroup difference in outcome 
for each risk-adjustment method. We calculated the ‘CI 
width of the results’ as a measure of efficiency and com-
pared these results with those obtained using Model 4. 
We calculated 95% bootstrap CI for these measures.

Results
Embedding with distribution representation
We obtained records of 15 998 963 patients discharged 
between April 2018 and March 2020 and 77 364 dimen-
sion tokens from the DPC data and used word2vec to 
obtain distribution representation weights with 200 
dimensions. All weights are publicly available on the 
authors’ website [22].

Data extraction the simulation study and real‑world data 
application
We extracted DPC data for HF cases (319  581 cases) 
that met the inclusion criteria and were discharged 

between April 2018 and March 2020 (Fig.  1). We 
excluded 52,994 patients that met the exclusion cri-
teria, leaving 266  587 patients in the real-world 
cohort (229  298 and 37  289 patients with delayed and 
early rehabilitation, respectively). The administra-
tive information for the real-world cohort contained 
8408-dimensional tokens and patient demographics 
are shown in Supplementary Table  S1. Systolic blood 
pressure, hypertension diagnosis, and intravenous furo-
semide, carperitide, and tolvaptan use were imbalanced 
between groups.

Simulation study
A prognostic model was constructed prior to the simula-
tion. The constructed prognostic model had a high dis-
criminative power (area under the curve: 0.868) and good 
calibration (Supplement 4). Simulation was performed 
using the constructed prognostic model.

Figures  2A and 3 shows the distribution of the esti-
mated risk differences in each simulation scenario for the 
four risk-adjustment methods. Though assumed to be 0, 
the unadjusted risk difference in Model 1 (depicted with 
black dots and bars) showed wide variation among the 
different sampling scenarios; Models 2–4 showed a rela-
tively unbiased risk difference compared with Model 1 in 
all scenarios; Model 3 showed a smaller risk reduction for 
the true risk difference (risk difference = 0) than Models 
2 and 4 and showed similar risk differences as Models 2 
and 4 in small-bias (within about 5% biased risk-differ-
ence) scenarios; and Model 4 demonstrated a risk differ-
ence equivalent to that of the true model (Model 2), with 
no observed increase in bias. The probabilities of cover-
ing the true values of the CI for models 1–4 were 17.8%, 
72.3%, 24.0%, and 75.5%.

Figure  2B shows the covariate balances between the 
exposure and control groups evaluated using the c-sta-
tistics of the matched cohort in each scenario in the 
four risk-adjustment models. Models 2 and 3 showed 
improvements in balance compared to Model 1. Each 
covariate balance assessed with SMD improved even 
when the unadjusted imbalance was greater than the 
other covariates, such as age, Japan Coma Scale (JCS) 
score, and ADLs on admission (Supplement 5).

Real‑world data application
Covariate balance in each risk‑adjustment model
Supplementary Figure S1 shows the covariate balance for 
each risk-adjustment model measured using SMD. Mod-
els 2 and 3 showed improvements in balance compared 
with Model 1, without covariate imbalances. Supplemen-
tary Figure S3 shows the estimated risk differences in 
early mobilization for primary and secondary outcomes 
in each risk-adjustment model. Compared to Model 1, 
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Fig. 1  Patient selection flowchart

Fig. 2  The results of the simulation in each scenario in the four risk-adjustment models. A, distribution of the estimated risk differences in each 
simulation scenario; B, the covariate balances between the exposure and control groups evaluated using c-statistics of the matched cohort in each 
scenario. Dots indicate point estimates and bars indicate 95% confidence intervals. The dots and bars are black, orange, blue, and red for models 1, 
2, 3, and 4, respectively
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early rehabilitation had a smaller estimated risk differ-
ence in models 2–4. Models 3 and 4 exhibited similar risk 
differences.

Bootstrap simulation
We obtained data for 13 676 patients (control/exposure: 
11 857/1 819), representing 5% of the sampled population 
from a real-world cohort.

Balance of each bootstrap cohort
The SMD for each variable is shown in Supplemen-
tary Figure S2. Models 2 and 3 showed improvements 
in balance compared with Model 1, without covariate 
imbalances.C-statistics of propensity score-matched 
cohorts.

We evaluated the covariate balances between the 
exposure and control groups using the c-statistics of the 
matched cohort in each model. Model 4 (0.555 [95% CI, 
0.549–0.561]) was the most balanced, followed by mod-
els 3 (0.579 [0.571–0.587]), 2 (0.690 [0.681–0.698]), and 1 
(0.710 [0.704–0.716]).

Bias of estimated outcome measures
Using bootstrap samples, we compared the estimated 
outcome measures obtained from models 1–3 with those 
from Model 4. No difference was observed between mod-
els 3 and 4 (Fig. 4).

Width of obtained confidence intervals
Using bootstrap samples, we compare the widths of the 
CI obtained from models 1–3 with those from Model 4. 
No significant difference was observed, except in-hospi-
tal mortality, between models 2 and 4 (Fig. 5).

Discussion
In this study, we developed and utilised distributed repre-
sentations of medical records from the DPC database to 
develop a novel risk-adjustment model that compressed 
the 77 364-dimensional data into 200 dimensions. Vari-
ous methods have been proposed for embedding non-
linguistic information using vector representations. 
Choi et al. constructed an MCEMC based on the medi-
cal claims information of approximately 4 million people 
[16]. Nelson et al. used the PageRank algorithm to embed 

Fig. 3  Estimated risk differences in early mobilization for primary and secondary outcomes in each risk-adjustment model. Panel A: In-hospital 
death and dependency (Barthel Index < 60) on activities of daily living. Panel B: In-hospital mortality. Panel C: Composite outcomes of in-hospital 
death and readmission within 90 days. Panel D: Length of hospital stay
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patient information from unstructured electronic health 
records into a biomedical knowledge graph that was sub-
sequently used to predict multiple sclerosis [23, 24]. We 
used the method proposed by Choi et al. [16] to embed 
Japanese medical claims data. The distributed represen-
tation weights obtained in this study represent all codes 
in the Japanese medical claims data as a vector: HF (I50), 
the target disease of this study, is related to various drugs 
and medical procedures (Supplement 6).

We tested the new risk-adjustment model using real-
world data to investigate whether it could reduce the 
bias from unmeasured confounders in a simulation study 
and showed that the new model (Model 3) effectively 
achieved this and improved covariate balances. Model 
4, combining variables from Model 3 and the true risk-
adjustment model (Model 2), showed no increase in bias 
compared with the true model (Model 2). That is, we con-
firmed that Model 4 did not exhibit a bias amplification 
when the variables used in Model 3 were added to Model 
2 (true model). Thus, Model 4 was used as the reference 
risk-adjustment model for real-world applications.

We compared the results of our new risk-adjustment 
model with those of a previous study [20]. Model 3 
obtained a better balance than models 1 and 2 whereas 
models 3 and 4 yielded similar results.

In clinical epidemiological studies, addressing unmeas-
ured confounders is crucial for the accurate estimation 
of effectiveness. The IV method was used to mitigate 
unmeasured confounders [6–9], wherein hospital reha-
bilitation preference was used as an IV and confirmed the 
robustness of the results for the primary outcome [20]. 
Questions regarding the validity of these variables persist 
because of instrumental outcome confounders. Further-
more, optimal IV are not always available.

The HDPS proposed by Schneeweiss et al. uses numer-
ous variables, including proxy variables, to adjust for 
unmeasured confounders [10, 11]. Recent advancements 
have incorporated deep learning and LASSO regres-
sion into HDPS computation [1, 25]. Weberpals et  al. 
conducted risk adjustment using deep-learning-based 
embedding [19].

We reduced bias from unmeasured confounders by 
incorporating comprehensive medical data into our 
model and using them as proxy variables. Using the 
derived distributed representation weights, we depicted 
treatments and the diagnosis on the first day as a 
200-dimensional numeric vector. Because treatments are 
decided based on patient severity, the initial treatment 
may have acted as a proxy for unrecorded severity, such 
as left ventricular ejection fraction.

Fig. 4  Differences of estimated outcome measures in models 1–3 compared with Model 4 (propensity score matching using variables included 
in models 2 and 3). A, In-hospital death and dependency (Barthel Index < 60) on activities of daily living; B, In-hospital mortality; C, Composite 
outcomes of in-hospital death and readmission within 90 days; and D, Length of hospital stay
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Though the JCS and ADLs at admission were not treat-
ments, the simulations indicated an improved covariate 
balance for these variables. The enhanced balance sug-
gests that the proposed methodology may feasibly adjust 
for several crucial covariates besides the JCS and ADLs at 
admission. The simulation results indicated that adjust-
ing for all confounders and medical practice information 
on the first day of admission did not bias the estimated 
treatment effect. Thus, Model 4’s estimation results mini-
mally influenced unmeasured or neglected confounders. 
In real-world data applications, models 3 and 4 had simi-
lar risk differences. Therefore, Model 3 was considered 
to estimate the treatment effects closely and accurately, 
even in real-world data with unmeasured or neglected 
confounding.

Model 2 showed more biased results compared to 
Model 3 and Model 4 in real-world applications. This 
suggests that the risk adjustment in Model 2 might be 
insufficient owing to the influence of unmeasured con-
founders or the omission of detailed treatment infor-
mation from the model, as commonly observed in 
traditional studies. The proposed Model 3 demonstrated 
the potential to perform risk adjustment beyond capa-
bilities of expert knowledge, indicating its contribution to 

the standardization and simplification of epidemiologi-
cal research using large-scale data. The findings of this 
study offer advantages over previous methods. Weber-
pals et al. utilised a deep-learning-based autoencoder for 
embedding [19] and HDPS [1]. This study used a novel 
method for simplifying high-dimensional covariates 
using a database. All the codes were assigned a specific 
value for the representation weight to enable simple cal-
culation of the sum of representation weights.

HDPS, compared to the proposed method, identifies 
factors that may influence bias by analyzing their rela-
tionships with outcomes and exposures. In contrast, 
the proposed method calculates weights using an unsu-
pervised learning approach, which does not require the 
explicit definition of outcomes or exposures. This flexibil-
ity allows precomputed weights to be applied to various 
epidemiological challenges, highlighting high versatility 
in the proposed method. In future research, this approach 
could be expanded by embedding the quantized data 
method used in this study for confounding adjustment. 
Such advancements could enable the incorporation and 
analysis of a broader range of data types, including natu-
ral language and image information to the model, further 
enhancing its applicability.

Fig. 5  Confidential interval width for models 1–3 compared to Model 4 based on bootstrap simulation results. A, In-hospital death 
and dependency (Barthel Index < 60) on activities of daily living; B, In-hospital mortality; C, Composite outcomes of in-hospital death 
and readmission within 90 days; D, Length of hospital stay
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The methods used in this study can be readily applied 
in clinical epidemiological research. The distributed rep-
resentation weight table, which allows researchers to 
convert medical records into 200-dimensional features, 
is accessible from the author’s website. This approach is 
especially beneficial for large databases, such as Japan’s 
National Database of Health Insurance Claims, which 
lacks detailed patient data but offers comprehensive cov-
erage of the population [26], whereby researchers can 
bolster comparative effectiveness research using these 
databases.

This study had some limitations. We ignored the 
amount of medicine in each prescription or combina-
tions of diagnoses and treatments. Implementing more 
precise patient matching may be possible by applying 
network structures such as transformer [27], which have 
been used in natural language processing in recent years. 
In this study, the number of embedding dimensions is 
fixed at 200. Therefore, further studies are required to 
determine whether the same results can be obtained by 
varying the number of dimensions. Second, it is difficult 
to guarantee that the constructed distributed representa-
tion is the best representation model. Third, the method 
used in this study, unlike HDPS, cannot explicitly iden-
tify the factors that directly contribute to confounding 
adjustment. Fourth, while simulation experiments con-
firmed that there was no increase in bias in Model 4, 
which was subsequently used as the reference model in 
real-world data applications, there is no guarantee that 
Model 4 represents the true model.

Conclusions
We demonstrated that embedded medical information 
can be used to perform risk adjustments for administra-
tive medical data.
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