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Abstract 

Background Trial sequential methods have been introduced to address issues related to increased likelihood 
of incorrectly rejecting the null hypothesis in meta‑analyses due to repeated significance testing. Between‑study vari‑
ance (τ2) and its estimate ( ̂τ  2) play a crucial role in both meta‑analysis and trial sequential analysis with the random‑
effects model. Therefore, we investigated how different τ̂  2 impact the results of and quantities used in trial sequential 
analysis.

Methods This case study was grounded in a Cochrane review that provides data for smaller (< 10 randomized clinical 
trials, RCTs) and larger (> 20 RCTs) meta‑analyses. The review compared various outcomes between video‑laryngos‑
copy and direct laryngoscopy for tracheal intubation, and we used outcomes including hypoxemia and failed intuba‑
tion, stratified by difficulty, expertise, and obesity. We calculated odds ratios using inverse variance method with six 
estimators for τ2, including DerSimonian‑Laird, restricted maximum‑likelihood, Paule‑Mandel, maximum‑likelihood, 
Sidik‑Jonkman, and Hunter‑Schmidt. Then we depicted the relationships between τ  2 and quantities in trial sequential 
analysis including diversity, adjustment factor, required information size (RIS), and α‑spending boundaries.

Results We found that diversity increases logarithmically with τ̂  2, and that the adjustment factor, RIS, 
and α‑spending boundaries increase linearly with τ̂  2. Also, the conclusions of trial sequential analysis can differ 
depending on the estimator used for between‑study variance.

Conclusion This study highlights the importance of τ̂  2 in trial sequential analysis and underscores the need to align 
the meta‑analysis and the trial sequential analysis by choosing estimators to avoid introducing biases and discrepan‑
cies in effect size estimates and uncertainty assessments.
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Graphical Abstract

What is new?
What is already known on this topic
Diversity, a quantity in trial sequential analysis, is related 
to between-study variance.

What this study adds
Between-study variance estimates are consistently asso-
ciated with all quantities in trial sequential analysis, 
regardless of whether the meta-analysis is small or large.

How this study might affect research, practice or policy
Consistency between meta-analysis and trial sequential 
analysis in variance estimators is crucial for integrity and 
validity.

Introduction
Cumulative meta-analysis has been introduced as a use-
ful method of identifying intervention benefits early and 
determining the statistical significance of evidence [1, 
2], although challenges such as multiplicity and biased 
reporting complicate this approach. Repeated signifi-
cance testing increases the likelihood of rejecting the null 
hypothesis [3], a concern that can be mitigated by using 
trial sequential methods. Group sequential analysis and 
cumulative z-curve modeling offer methods for monitor-
ing trial progress and determining when to terminate a 
trial based on accumulating evidence [4–6]. These meth-
ods have been extended to meta-analysis for controlling 
falsely significant results (Type I errors, α) due to biases or 
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random errors from repeated testing [1–3, 7–9]. Because 
of the sequential method’s capacity for error correction 
in aggregating evidence, several articles in diverse medi-
cal specialties have introduced, endorsed, and apply trial 
sequential analysis [10–15]. These references frequently 
underscore the importance of identifying key quantities 
in computing for the method, which include the required 
information size (RIS), diversity (D2), and α-spending 
boundaries. Evidence is considered confirmed when the 
cumulative z-score crosses the α-spending monitoring 
boundaries [3, 10, 16]. The α-spending boundaries pro-
vide a threshold of significance by allocating the overall α 
among the cumulative analyses. This adjusted threshold 
guides researchers in determining whether the cumula-
tive evidence reaches statistical significance. Hence, it is 
imperative to understand better not only the above quan-
tities but also the various factors that are used in comput-
ing these quantities and thus may affect the results of a 
trial sequential analysis.

Between-study variance (τ2) is an important quantity 
for both the meta-analysis and the trial sequential analy-
sis in a random-effects model. It is well-known that the 
estimate τ2, τ̂  2, is combined with within-study variance 
(denoted νi) to produce a weight for each study 
Wrandom.i =

1

(νi+τ̂
2
)
 , through which τ̂  2 influences the esti-

mated pooled effect (denoted θ̂  random) and it variance 
(denoted ν̂  random) [17]. The standard error and z-score 
for the pooled result are further derived based on τ̂  2. 
Between-study variance is also a critical quantity in trial 
sequential analysis, as it affects the RIS. The RIS for a 
meta-analysis using the random-effects model ( ̂RIS ran-

dom) can be expressed as follows:

where
α is the predefined overall probability of a false positive.
β is the predefined overall probability of a false 

negative.
μ2 is the expected effect.
ν̂  random is the variance of pooled effects of the meta-

analysis in random-effects model.
Note:
1. ν̂  random can be obtained from 1

∑j
i=1

Wrandom.i

.

2. R̂ISrandom here is also unadjusted required informa-
tion size ( ̂RIS unadjusted.random).

Considering heterogeneity (also known as between-
study variance) in meta-analysis, the inclusion of an 
adjustment factor (AF) becomes imperative for estimat-
ing the RIS ( ̂RIS ). Diversity (D2) has been proposed as a 
measure and as a foundational quantity for the AF and 
the adjusted RIS, which is the unadjusted RIS multiplied 

(1)R̂ISrandom = 4 ∗
(Z

α/2 + Zβ)
2
∗ ν̂random

µ
2

random

by the AF [18]. D2 is the total relative variance when 
changing from a pooled analysis using the common-
effect model to a meta-analysis using the random-effects 
model. The D̂ 2 can be expressed as follows:

where
νfixed is the variance of pooled effects of the meta-anal-

ysis in fixed-effect model (also known as common-effect 
model).
ν̂  random is the variance of pooled effects of the meta-

analysis in random-effects model.
An alternative expression of D̂ 2 can highlight the role 

of the estimated between-study variance in the calcula-
tion, as follows:

where
νfixed is the variance of pooled effects of the meta-anal-

ysis in fixed-effect model (also known as common-effect 
model).
ν̂  random is the variance of pooled effects of the meta-

analysis in random-effects model.
τ̂
2 is estimated between-study variance of the meta-

analysis in random-effects model.
Then, the adjustment factor of the R̂IS (denoted as ÂF  ) 

can be derived using D2, as expressed ÂF  = 1

(1−D̂
2
)

 . Since 

τ̂  2 is a crucial quantity in the random-effects model, it 
impacts the estimates of diversity ( ̂D 2), adjustment factor 
( ÂF  ), and the adjusted RIS ( ̂RIS adjusted). The estimate of 
τ2, τ̂  2, is crucial for both meta-analysis and trial sequen-
tial analysis using a random-effects model. Previous stud-
ies have pointed out the importance of between-study 
variance within trial sequential analysis using a random-
effects model, but the influence of different estimators of 
between-study variance on various quantities in such an 
analysis warrants further discussion [3, 18, 19].

The RIS plays a crucial role in trial sequential analysis, 
serving as both a threshold for the methodological and 
clinical establishment of evidence, and as the foundation 
for calculating α-spending boundaries [3, 7, 10]. The con-
cept of RIS originated from the optimal information size, 
drawing upon quantities such as expected effect size, var-
iance, and predetermined α and Type II errors (β) [3, 7]. 
The RIS can be obtained using the expected effect size, 
the variance of the pooled model, and predetermined α 
and β.

In sequential meta-analysis using the random-effects 
model, τ̂  2 plays a critical role due to its impact on both 

(2)D̂2
=

ν̂random − νfixed

ν̂random

(3)D̂2
=

1

τ̂
2
∗ (τ̂

2
+

τ̂
2
∗ νfixed

ν̂random − νfixed
)
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the observed cumulative z-score and D̂ 2. An estimator 
for the between-study variance can be derived by vari-
ous approaches, e.g., the method of moments, maximum 
likelihood, and the model error variance estimator [20]. 
Owing to differences between these different estimators 
of between-study variance [21–23], both D̂ 2 and R̂IS can 
also differ depending on the estimator chosen. This case 
study aimed to enhance understanding of how the choice 
of τ̂  2 influences quantities used in trial sequential analy-
sis in random-effects model.

Methods
This case study aimed to elucidate the influence of τ̂  2 
in trial sequential analysis by illustrating its relationship 
with the observed cumulative z-score, estimated diver-
sity ( ̂D 2), adjustment factor ( ÂF  ), required information 
size ( ̂RIS ), and the z-score of the α-spending boundaries. 
The registration for this study can be accessed through 
the Open Science Framework (https:// osf. io/ czstm). In 
addition to the registration, we add an example to dem-
onstrate the relationship between τ̂  2 and the conclu-
siveness of evidence. This study was proposed to depict 
the aforementioned relationship across various study 
sizes, considering the presence or absence of significant 
heterogeneity. Consequently, we intended to identify a 
Cochrane review that includes both smaller and larger 
meta-analyses, including cases of both significant and 
non-significant heterogeneity based on the specified cri-
teria as follows: (1) systematic reviews with meta-analy-
ses having < 10 randomized clinical trials (RCTs) and > 20 
RCTs, (2) outcomes with varying levels of between-study 
variance, and (3) data availability.

The case study used here
A systematic review conducted by Hansel et  al. (2022) 
fulfilling the criteria outlined above was chosen for use 
in this study [24]. Specifically, this study used data from 
the Cochrane review that investigated the comparative 
effects of video-laryngoscopy and direct laryngoscopy 
in adults undergoing tracheal intubation. The Cochrane 
review includes outcomes with or without significant 
heterogeneity according to the P-value from the χ2-test 
for heterogeneity (P < 0.1) based on the DerSimonian-
Laird method (DL). The low power of the χ2-test for het-
erogeneity in meta-analyses with small or few studies 
means that a non-significant result cannot be taken as 
evidence of no heterogeneity, which justifies sometimes 
using a P-value of 0.10 to assess statistical significance 
instead of the conventional 0.05 [25]. We extracted four 
outcomes from the review, including a small meta-anal-
ysis comparing hypoxemia using seven RCTs without 
significant heterogeneity (P-value = 0.68), failed intuba-
tion in difficult cases using nine RCTs with significant 

heterogeneity (P-value = 0.0993). We also analyzed larger 
meta-analyses focusing on failed intubation using 48 and 
62 RCTs, categorized by practitioner expertise without 
significant heterogeneity (P-value = 0.65) and by obesity 
status with significant heterogeneity (P-value = 0.0003), 
respectively (Supplementary file 1). We also selected data 
on failed intubations comparing hyper-angulated video 
laryngoscopy and direct laryngoscopy in patients with 
difficult cases to provide a clear example of evidence con-
clusiveness using τ̂  2.

Methods for estimating between‑study variance
For each of the above outcomes, we estimated the odds 
ratio using inverse variance. The present study does not 
include the results from Mantel–Haenszel and Peto’s 
pooling methods due to discouragement about their 
applicability, despite the intention to incorporate them in 
our initial registration and early analyses. To understand 
the role of τ̂  2 in trial sequential analysis, we considered 
six estimators for τ2: DL [26], restricted maximum-likeli-
hood (REML) [27], Paule-Mandel [28], maximum-likeli-
hood [27], Sidik-Jonkman [29], and Hunter-Schmidt [30]. 
Equations for the estimators are given in Supplementary 
file 2.

Methods for trial sequential analysis
Supplementary file 3 presents detailed formulae for the 
trial sequential analysis methods used in this study [3, 
7, 18]. The main formulae are for D̂ 2, ÂF  , R̂IS , and the 
z-score of the α-spending boundaries. Briefly, τ̂  2 is calcu-
lated as part of using the random-effects model and influ-
ences the variance of the pooled estimate, which directly 
impacts both D̂ 2 and R̂IS . Subsequently, through D̂ 2 
and R̂IS , τ̂  2 and the variance of the pooled estimate also 
affect ÂF  and the z-score of the α-spending boundaries. 
We describe variability of those quantities using range 
and quartile coefficient of variation (QCV) [31, 32].

Software
All analyses were done using R version 4.2.2, specifi-
cally the function `metabin()` of the package meta (ver-
sion 7.0–0) to perform meta-analysis and the function 
`DoTSA()` of the package smiles (version 0.1–0) to per-
form trial sequential analysis [33–36]. The R package 
RTSA has been endorsed by Copenhagen Trial Unit for 
performing trial sequential analysis [37]; however, it has 
limited options for estimating the between-study vari-
ance. Therefore, we opted the R package smiles, which 
supports all the estimators of between-study variance 
mentioned in the R package meta. When given the same 
inputs, the TSA software (version 0.9.5.10 Beta, Copen-
hagen Trial Unit, Copenhagen University Hospital – Rig-
shospitalet, Denmark) and the function `DoTSA()` of the 

https://osf.io/czstm
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R package smiles returned the same values for the RIS. 
Supplementary file 4 shows one example using hypoxae-
mia data with the DL estimator, α = 0.05, β = 0.2, relative 
risk reduction 20%. Supplementary file 5 gives the R code 
used for this study. Supplementary file 6 summarizes the 
quantities computed in the trial sequential analyses.

Results
Supplementary file 7 shows the sequence of calcula-
tions through which the estimated between-study vari-
ance ( ̂τ  2) impacts the results of both a meta-analysis 
and a trial sequential analysis. As the observed cumula-
tive z-score of a meta-analysis is commonly compared to 
the z-score of an α-spending monitoring boundaries in a 
trial sequential analysis, in the present study we focus on 
exploring the relationship between τ̂  2 and the observed 
cumulative z-score of the meta-analysis, and on the rela-
tionship between τ̂  2 and the calculations done in paral-
lel with D̂ 2, ÂF  , R̂IS , and the z-score of the α-spending 
boundaries.

Relationship between τ̂  2 and D̂2

Figure  1A shows that D̂ 2 increases as τ̂  2 increases; 
the relationship appears to follow a logarithmic curve 
because D̂ 2 is between 0 and 1. This increasing trend 
is consistent across the four outcomes, while D̂ 2 seems 
to be sensitive to the selection of τ̂  2 due to its range 
between 0 to 0.43, 0.25 to 0.71, 0 to 0.68, and 0.40 to 
0.71 in the four outcomes. In meta-analysis with non-
significant heterogeneity, the QCV of D̂ 2 achieved 100% 
among the six between-study variance estimators (Sup-
plementary file 8). Because the Sidik-Jonkman approach 
produces the largest τ̂  2 across the four outcomes, the red 
points for Sidik-Jonkman usually have the largest D̂ 2.

Relationship between τ̂  2, the adjustment factor 
and the required information size
The diversity-based adjustment factor ( ÂF  D2) increases 
linearly as τ̂  2 increases (Supplementary file 8), and the 
relationship between τ̂  2 and the diversity-adjusted 
required information size ( ̂RIS D2) was also nearly lin-
ear (Fig.  1B). These two figures have similar patterns 
because R̂IS D2 is computed as R̂IS unadjusted ÂF  D2. How-
ever, both quantities are sensitive to the selection of τ̂  2, 
even in meta-analyses without significant heterogeneity. 
ÂF  D2 varies from 1 to 1.75, 1.34 to 3.48, 1 to 2.81, and 
1.68 to 3.41 across the four outcomes. Similarly, R̂IS D2 
varies between 3789 and 6655, 5940 and 15,477, 8254 
and 23,190, and 14,588 and 29,629 for the respective 

outcomes. The QCV ranges between 0 and 16% across 
the four outcomes.

Relationship between τ̂  2 and α‑spending boundaries
Figure 2A shows a trend in which, in most panels of the 
Figure, the α-spending boundaries increase linearly as τ̂  
2 increases. The minimum α-spending boundary ranges 
from − 6.88 to − 5.20 (QCV = 0%), from − 7.13 to − 4.53 
(QCV = 8%), from − 3.81 to − 2.27 (QCV = 3%), and 
from − 3.71 to − 2.60 (QCV = 5%) for the four outcomes 
respectively.

Relationship between τ̂  2 and observed cumulative z‑score
In Fig.  2B, the primary phenomenon in all four out-
comes is a decreasing trend in cumulative z-score as τ̂  2 
increases. The minimum cumulative z-score varies, with 
a range of − 4.13 to − 3.14 for QCV at 0%, − 3.32 to − 
2.99 for QCV at 2%, − 8.23 to − 4.90 for QCV at 4%, and 
− 6.03 to − 4.29 for QCV at 5%, reflecting the four dis-
tinct outcomes. Notably, the Sidik-Jonkman approach 
seems to yield the largest τ̂  2 among the estimators irre-
spective of outcome.

Evidence conclusiveness by τ̂2

Based on data comparing failed intubations between 
hyper-angulated video laryngoscopy and direct laryngo-
scopy in patients with difficult cases, the conclusiveness 
of the evidence depends on the choice of the estimator τ̂  
2. The evidence is conclusive and statistically significant 
when applying REML, Hunter-Schmidt, and maximum-
likelihood estimators (Fig. 3).

Discussion
This study found distinct patterns showing how the 
estimator of between-study variance, τ̂  2, affects both 
meta-analysis and trial sequential analysis. The pro-
found implications of choosing an estimator for τ2 are 
well known [20–23, 38]. These investigations found 
wide disparities in estimates of τ2 across diverse scenar-
ios characterized by differing data types (dichotomous 
and continuous), effect sizes, and levels of true τ2. For 
instance, the Sidik-Jonkman approach consistently tends 
to overestimate τ2, irrespective of whether the meta-
analysis is small or large, and regardless of the type of 
outcome (dichotomous or continuous) [20, 23]. This phe-
nomenon can also be observed in our study (red points in 
Figs. 1 and 2).

Importantly, τ̂  2 is the bedrock of trial sequential anal-
ysis using the random-effects model [15]. It is a critical 
quantity for estimating the RIS, which is essential for 
establishing a threshold of information sufficiency and 
for defining α-spending boundaries [3, 7, 18]. Typically, 
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Fig. 1 Scatter plots of (A) diversity ( ̂D 2) versus estimated between‑study variance ( ̂τ  2) and (B) required information size ( ̂RIS ) versus estimated 
between‑study variance ( ̂τ  2), for smaller meta‑analysis without significant heterogeneity, smaller meta‑analysis with significant heterogeneity, 
larger meta‑analysis without significant heterogeneity, and larger meta‑analysis with significant heterogeneity. DL, DerSimonian‑Laird estimator; 
HS, Hunter‑Schmidt estimator; ML, Maximum‑likelihood estimator; PM, Paule‑Mandel estimator; REML, Restricted maximum‑likelihood estimator; SJ, 
Sidik‑Jonkman estimator
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Fig. 2 Scatter plots of (A) α‑spending monitoring boundary versus estimated between‑study variance ( ̂τ  2) and (B) observed cumulative 
z‑score versus estimated between‑study variance ( ̂τ  2), for smaller meta‑analysis without significant heterogeneity, smaller meta‑analysis 
with significant heterogeneity, larger meta‑analysis without significant heterogeneity, and larger meta‑analysis with significant heterogeneity. DL, 
DerSimonian‑Laird estimator; HS, Hunter‑Schmidt estimator; ML, Maximum‑likelihood estimator; PM, Paule‑Mandel estimator; REML, Restricted 
maximum‑likelihood estimator; SJ, Sidik‑Jonkman estimator
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Fig. 3 Trial sequential analysis plots using different between‑study variance estimators ( ̂τ  2) for failed intubations comparing hyper‑angulated 
video laryngoscopy and direct laryngoscopy. DL, DerSimonian‑Laird estimator; HS, Hunter‑Schmidt estimator; ML, Maximum‑likelihood estimator; 
PM, Paule‑Mandel estimator; REML, Restricted maximum‑likelihood estimator; SJ, Sidik‑Jonkman estimator
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adjusting the RIS is necessary when there is between-
study variance (τ2) in a meta-analysis using the random-
effects model. The adjustment is fundamentally based on 
τ̂  2 and is especially relevant when incorporating diver-
sity ( ̂D 2) into the adjustment process [18]. The patterns 
in the figures offer an overview on the crucial role of 
selecting an estimator of between-study variance in trial 
sequential analysis due to the impact of τ̂  2 on D̂ 2, ÂF  , 
R̂IS , and the z-score of the α-spending boundaries.

Implications
Given the need to choose an estimator of between-
study variance in trial sequential analysis, two practical 
recommendations emerge. First, consistency between 
meta-analysis and trial sequential analysis in select-
ing between-study variance estimators is paramount for 
maintaining the integrity and validity of the research 
findings. Inconsistency in these choices can introduce 
biases and undermine the reliability of conclusions drawn 
from sequential analyses. For instance, using different 
between-study variance estimators in the two analytical 
phases may lead to discrepancies in effect size estimates 
and uncertainty assessments, impacting the interpreta-
tion of results. Therefore, researchers must carefully align 
these choices of methods across meta-analysis and trial 
sequential analysis. Secondly, protocol design for synthe-
sizing evidence using sequential methods requires careful 
consideration of the estimator that is chosen. Therefore, 
including these choices of methods in the protocol 
ensures the consistency and rigor necessary for produc-
ing trustworthy evidence through sequential synthesis 
methods.

Limitations
While this study delineates step-by-step the role of 
between-study variance at various stages of trial sequen-
tial analysis, it is important to acknowledge several limi-
tations. Primarily, the study’s scope was constrained by 
the availability of published data from a Cochrane review, 
limiting the depth of analysis for certain phenomena. For 
instance, while this study provides valuable insights into 
estimated between-study variance ( ̂τ  2), further investi-
gation is warranted across diverse scenarios such as dif-
ferent effect sizes, sparse data, and unequal sample sizes. 
A comprehensive examination of the varying impacts of 
τ̂  2 will require exploration through simulation studies. 
Second, this study’s findings rely on between-study vari-
ance estimators that are commonly used in meta-analyses 
and cannot show which estimators are better or worse 
for trial sequential analysis across different scenarios, 
underscoring the need for further research in this area. 
Third, this work performs the role of τ̂  2 in trial sequen-
tial analysis based on dichotomous data, while we know 

that τ̂  2 varies by differing data types. Further studies are 
encouraged to use continuous data to illustrate the rela-
tionships and quantities in trial sequential meta-analysis 
within a random-effects model. Lastly, the study does not 
explore the relationship between τ̂  2 and the β-spending 
function, which is a reasonable decision considering its 
primary focus. However, we contend that τ̂  2 may have an 
impact on the β-spending function because of its influ-
ence on the RIS. Further investigation into how τ̂  2 affects 
the β-spending function would be valuable.

Conclusions
This study sheds light on the influence of the estimator 
of between-study variance in trial sequential analysis, 
emphasizing the crucial need for predetermined and 
consistent use of estimation methods for this variance. 
Besides, trial sequential analysis seems to be sensitive to 
the τ̂  2 used to establish its boundaries. This presents a 
challenge, as the estimation of between-study variance 
frequently lacks precision, especially in cases with a lim-
ited number of studies. By enriching our understand-
ing of these complexities, these efforts will enhance the 
integrity and utility of trial sequential analysis in inform-
ing evidence-based practice and decision-making in 
healthcare.
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