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Abstract 

Background Traditional statistical methods assume normally distributed continuous variables, making them unsuit-
able for analysis of prevalence proportions. To address this problem, two commonly utilized variance-stabilizing trans-
formations (logit and Freeman-Tukey) are empirically evaluated in this study to provide clarity on the optimal choice 
among these transforms for researchers.

Methods Simulated datasets were created using multiple Monte Carlo simulations, with varying input param-
eters to examine transformation estimator performance under varying scenarios. Additionally, the research delved 
into how sample size and proportion influenced the variability of the Freeman-Tukey transform. Performance 
was evaluated for both single prevalence proportions (coverage, interval width and variation over sample size) as well 
as for meta-analysis of prevalence (absolute mean deviation of pooled proportions, coverage and interval width).

Results For extreme proportions we found that the Freeman-Tukey transform provides better coverage and narrower 
intervals compared to the logit transformation, and for non-extreme proportions, both transformations demon-
strated similar performance in terms of single proportions. The variability of Freeman-Tukey transformed proportions 
with sample size is only seen when the range of proportions under scrutiny are very small (~ 0.005), and the variability 
of the Freeman-Tukey transform’s value occurs in the third decimal place (0.007). In meta-analysis, the Freeman-Tukey 
transformation consistently showed lower absolute deviation from the population parameter, with narrower confi-
dence intervals, and improved coverage compared to the same meta-analyses using the logit transformation.

Conclusion The results suggest that the Freeman-Tukey transform is to be preferred over the logit transformation 
in the meta-analysis of prevalence.
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Background
The findings from many conventional epidemiologi-
cal studies are presented in the form of prevalence 
proportions playing a fundamental role in clinical 
research. These prevalence proportions are typically 
bound within the 0 and 1 range and therefore analyz-
ing prevalence data presents unique challenges since 
traditional statistical methods assume normally distrib-
uted continuous variables [1]. Prevalence proportions 
also exhibit heteroscedasticity, with variance typically 
increasing towards the boundaries of 0 and 1 [1]. To 
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address these issues, statistical methods make use of 
variance-stabilizing transformations of prevalence 
proportions and results are then back-transformed 
for interpretation. Such transformed prevalence pro-
portions aid in better approximations to the normal 
distribution while enabling meta-analytic pooled pro-
portions to keep to the 0 or 1 limits. Also, since they 
are unconstrained to the 0 to 1 range, transformed pro-
portions avoid the squeezing of variance observed at 
extremes of natural proportions [1]. The two most com-
monly used variance-stabilizing transformations are 
the logit transformation and the Freeman–Tukey dou-
ble arcsine square-root transformation (FTT) [2].

The logit transformation [2, 3] is the log of the odds, 
that is, the log of the ratio of a proportion to its com-
plement (one minus the proportion). By taking the 
natural logarithm of the odds, the logit transformation 
maps proportions onto the entire real number line. The 
logit transformed proportion ( ̂ti ) with a continuity cor-
rection (z) for extreme proportions of zero or one is 
given by:

where ei denotes the events and ni the sample size for 
each sample i = 1,2,3…k and for the two extreme situa-
tions (i.e. ei = ni, ei = 0 ), a continuity correction (z) is 
applied [4], where z generally takes the value of 0.5. No 
continuity correction is applied to other event numbers.

The variance of the above transformed proportion 
( Varti ) is given by:

The double arcsine square root transformation [5] 
(FTT or the angular transformation) is calculated as two 
times the arcsine of the square root of the proportion. 
By applying the arcsine function twice, the transformed 
values are mapped from the interval [0, 1] onto the inter-
val [0,π ] . This transformation stabilizes the variance, 
mitigating the heteroscedasticity commonly observed in 
prevalence data. Also, the FTT promotes symmetrical 
distributions, enabling researchers to utilize parametric 
statistical tests that assume normality. It is therefore well 
suited to meta-analysis and the analysis of binomial or 
proportional data. The Freeman–Tukey double-arcsine 
transformed proportion ( ti ) is calculated as follows:

(1)�ti =






ln

�
ei−z
ni

/(1−
ei−z
ni

)

�
if ei = ni

ln

�
ei+z
ni

/(1−
ei+z
ni

)

�
if ei = 0

ln

�
ei
ni
/(1−

ei
ni
)

�
otherwise

(2)Var�ti =






1
ei−z +

1
ni − (ei−z) if ei = ni

1
ei+z +

1
ni − (ei+z) if ei = 0

1
ei

+
1

ni − eI
otherwise

Again, ni denotes the sample size and ei denotes events 
for each sample i = 1,2,3…k. Although no continuity 
correction is required for this transformation, the ben-
efit of adding a correction to events at the two extremes 
( ei = ni, ei = 0 ) was examined through simulation and 
found to be present and optimal at z = 0.15 which is dif-
ferent from the value found to be optimal for the logit 
transformation (see methods section). The variance of 
the above transformed proportion ( Var̂ti ) is given by

The lower ( ̂tiL ) and upper ( ̂tiH ) confidence intervals of 
the transformed proportions (logit or FTT) are given by:

where SEt̂i =
√

Var̂ti  . As observed in expression {4} 
above, the variance of the FTT proportion depends only 
on the sample size, making it a fixed value. However, the 
variance of the logit transformation depends additionally 
on the event counts, which are random variables [3] that 
vary from sample to sample, and this variability would 
contribute to the inconsistency of the logit transforma-
tion. As noted by Lin and Xu [3], this is potentially a great 
advantage of the FTT transformation, particularly in the 
meta-analysis context. However, recent research has 
raised two specific criticisms. Firstly, that the final trans-
formation back to the proportion scale requires making a 
choice of estimate for the average sample size across 
studies. At the time when Miller [6], suggested a more 
accurate back-transformation for the FTT, it required a 
sample size, and he suggested the harmonic mean for 
meta-analytic estimates, but without solid justification. A 
recent criticism of FTT was based on use of the har-
monic mean [7]. However, the latter ignored our much 
earlier demonstration that the effective sample size 
through the variance is more appropriate and restores 
stable estimation through the FTT [2, 8]. This improved 
approach has been implemented into the popular user-
written meta-analysis module for Stata, metan [9]. The 
second, more recent, criticism that has emerged revolves 
around the inconsistency between the transformed val-
ues and the original proportions [10]. In a recently pub-
lished article, the authors demonstrated that transformed 

(3)

�ti =






arcsin
�

ei−z
ni+1 + arcsin

�
ei−z+1
ni+1 if ei = ni

arcsin
�

ei+z
ni+1 + arcsin

�
ei+z+1
ni+1 if ei = 0

arcsin
�

ei
ni+1 + arcsin

�
ei+1
ni+1 otherwise

(4)Var̂ti =
1

ni + 0.5

(5)t̂iL = t̂i − 1.96SEt̂i and t̂iH = t̂i + 1.96SEt̂i



Page 3 of 12Abdulmajeed et al. BMC Medical Research Methodology           (2025) 25:89  

values are not monotonic with the original proportions 
as they vary also with sample size (this is because of the 
“ + 1” in expression {3}) and they pointed out that FTT 
values differed by sample size even when the proportion 
value was held constant [10]. This led the authors to rec-
ommend against use of the FTT in meta-analysis [10]. 
Since the FTT has performed well in empirical studies 
[11], this criticism warrants further examination. The aim 
of the current study is to demonstrate, using simulation, 
the performance of FTT across a range of data-generat-
ing mechanisms, for both single and meta-analytic preva-
lence proportions, to identify the extent of potential 
non-monotonicity [10] and the consequences for infer-
ence of using the FTT. In so doing, we aim to determine 
whether FTT remains the better option, when compared 
to the logit transformation for meta-analysis of 
prevalence.

Methods
Simulations of single proportions to demonstrate their 
suitability as input into meta‑analysis
We generated simulated datasets of proportions using 
Monte Carlo simulation in Stata. The proportions were 
then transformed using the FTT and logit transforma-
tions to evaluate variance stabilization as well as width 
and coverage of the confidence intervals prior to their 
input into meta-analysis. The simulation parameters were 
adjusted to evaluate the estimators under different sce-
narios, including extremely small proportions ranging 
from 0.0001 to 0.01, with sample sizes varying from 2500 
to 12,500. Additionally, we examined the performance of 
the transformations for extremely large proportions rang-
ing from 0.99 to 0.9999, again with varying sample sizes. 
Lastly, we evaluated non-extreme proportions ranging 
from 0.01 to 0.99, also with varying sample sizes ranging 
from 2500 to 12,500. We also assessed the optimal mag-
nitude of z for the two extremes of events before settling 
on z = 0.5 and z = 0.15 for the logit and FTT transforms 
respectively (data not shown).

To further investigate the relative impact of sample 
size and proportion size on the variability of the FTT 
transformed proportion, we used the simulated data as 
generated above and conducted a regression analysis to 
predict FTT from sample size and proportion size. The 
proportion size was categorized into 500 quantiles and 
the sample size into 20 quantiles and then used as pre-
dictive categorical variables in linear regression. The 
marginal predictions from models with different ranges 
of the quantiles were plotted to visually analyze the con-
tribution of these two factors to FTT prediction.

All simulations conducted follow the general steps 
given below (Stata code and datasets are available in sup-
plementary material):

1. Creating local parameters for simulation
2. Defining the loop for the simulation
3. Creating the variables within the loop for simulation
 3.1. Transform the proportion as required.
 3.2. Estimate standard error for the generated pro-

portion on its scale.
 3.3. Calculate confidence intervals for the proportion.
 3.4. Back transform the confidence intervals if 

required.
 3.5. Generate indicators for performance evaluation 

within the loop (width and confidence interval).
4. Complete the remaining loops and append data gen-

erated to file
5. Generating performance measures

Step 1: creating starting values of local parameters 
for simulation
At the outset, we create local parameters for the simula-
tion. These include the starting sample size (S), a confi-
dence factor (C = 2), a continuity correction (z = 0.15 for 
FTT and z = 0.5 for logit transformations) and number of 
iterations (B).

Step 2: defining the loop for the simulation
We start a loop defined by the true proportion ( pt ) that 
takes on a fixed value ranging between 0.0001 to 0.01 in 
steps of 0.00005 (199 values of pt).

Step 3: creating the variables within the loop 
for simulation
At each loop, we generate a set of B observations indexed 
by i = 1,2,3…B. For each observation the following vari-
ables are generated:

Sample size given by ni ∼ int[Uniform(S, S + 10000)] .
Events given by ei ∼ Binomial(ni, pt)

The sample proportion is given by pi =
ei
ni

Step 3.1. Transform the proportion as required: Each 
proportion is transformed using both the FTT and 
logit transforms as per the expressions {1} & {3}.
Step 3.2. Estimate the standard error for the gen-
erated proportion on the respective scales as per 
expressions {2} & {4}.
Step 3.3. Calculate confidence intervals for the pro-
portion as per notation {5}.
Step 3.4. Back-transformation of the transformed 
proportions, and estimation of lower and upper con-
fidence intervals of the same.

When events are close to 0 or ni, the back transformed 
confidence limits for very small proportions can become 
numerically unstable and to avoid this our group had 
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previously recommended [2] that the confidence inter-
val of the back transformation be set to zero or 1 based 
on the value of a defined confidence variable C dropping 
below C = 2. The back transformation of the logit propor-
tion is given by:

The lower confidence intervals of the back-transformed 
logit proportion ( ̂piL ) is given by:

The upper confidence intervals of the back-trans-
formed logit proportion ( ̂piH ) is given by:

where t̂i, t̂iL, t̂iH are the logit transformed proportions of 
interest and C is the confidence factor.

The back transformation of the FTT proportion is 
given by:

The lower confidence interval of the back-transformed 
FTT proportion ( ̂piL ) is given by:

The upper confidence intervals of the back-trans-
formed FTT proportion ( ̂piH ) is given by:

where t̂i, t̂iL, t̂iH are the FTT proportions of interest and 
C is the confidence factor.
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Step 3.5. Generate indices for performance evalua-
tion within the loop.

We generate the following indicators to evaluate the 
performance of the estimators as detailed in the next 
step.

A. Width of confidence interval.

 The width of the CI(Wi) for each loop is given by the 
difference between the upper and lower confidence 
interval corresponding to each iteration.

 

 where p̂iH is the upper CI and p̂iL is the lower CI for 
each iteration with i = 1,2, 3 . . .B

B. Coverage
 We generate a coverage indicator variable (Ii) that 

returns 1 for coverage (i.e. if the confidence interval 
in the iteration set contains the true proportion) and 
0 for no coverage.

Step 4: Complete the remaining loops and append data 
generated to file
Run step 3 for each value of pt . The output of each loop 
is appended and stored in a temporary file for generating 
the final output.

Step 5: Generating Performance measures
We evaluate the performance of the estimator based on 
the average width of confidence interval and the cover-
age probability. A good estimator must have coverage 
probability close to its nominal level, and preferably with 
narrower confidence intervals. For the same reason, 
the coverage and width of the CI should be considered 
together while evaluating performance of the estimator.

The final average width at each run is given by

Wi = (p̂iH − p̂iL)

(12)Width =

∑B
i=1(p̂iH − p̂iL)

B
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where B is the no. of iterations in the simulation run, p̂iH 
is the upper CI and p̂iL is the lower CI for each iteration 
with i = 1,2, 3 . . .B

Coverage probability of an estimator indicates the pro-
portion of intervals in the each run containing the true 
proportion. The sum of the coverage variable Ii divided 
by the number of iterations for the simulation run returns 
the coverage probability:

To visually analyze the results, we further plot the true 
proportion against the coverage probability.

Simulation of application of the two transforms and back 
transforms to meta‑analyses
We created three new sets of simulated datasets with 
the true proportions ranging from extremely small 
to extremely large proportions. The first set included 
true proportions between 0.0001 to 0.00105 in steps 
of 0.00005 (20 unique true proportions) and with 1000 
iterations per true proportion creating 20,000 simu-
lated proportions (based on events and observations). 
This simulation run was repeated nine more times to 
create a dataset with 10 runs each of 20 true proportion 
groups and 20,000 simulated proportions. From the 
dataset, groups of 10 proportions were randomly sam-
pled from each true proportion group across each run 
to create the meta-analysis dataset and thus there were 
20 meta-analysis datasets with 10 studies per run and 
200 meta-analysis datasets in total. The same process 
was repeated to generate a dataset of 200 meta-analyses 
with extremely large true proportions ranging between 
0.99892 to 0.9999 in steps of 0.00005 and another data-
set of 200 meta-analyses for non-extreme proportions 
ranging from 0.1 to 0.87 in steps of 0.04. The meta-ana-
lytic results for each set of 10 studies were generated 
using the IVhet model [12]. Doi’s IVhet model has been 
shown in simulation studies to fix error estimation by 
addressing overdispersion when compared to the tra-
ditional fixed-effect model [13]. Both the simulations 
and the meta-analyses were computed in Stata version 
17, StataCorp, College Station, TX, USA, using the 
metan module [9]. The analysis was done twice, once 
with either transform on the same dataset. The width 
of the confidence interval as well as the deviation of 
each meta-analytical point estimate from the true pro-
portion value were plotted for each run and each trans-
form as clustered box plots. Lastly, total coverage of the 
confidence intervals across the 200 meta-analyses were 

(13)Pr(Ii = 1) =

∑B
i=1 Ii

B

compared across the two transformations used and 
under the three different scenarios.

The back transformation of the FTT proportion in a 
single study is usually given by expression {9}. However 
in meta-analysis the harmonic mean of study sizes has 
been used [7] in place of ni in expression {9} but this 
has been based on a misunderstanding which we have 
corrected as follows [2, 8]:

where p is the pooled prevalence on the natural scale and 
t is the pooled t̂i . p′ is given by p′ =

(
sin t

2

)2
 and v is the 

pooled variance on the FTT scale. Instead of the har-
monic mean as suggested by Miller [6], we use the inverse 
of the meta-analytic variance on the double arcsine trans-
formed scale ( 1/v ) which represents the effective meta-
analytic sample size. Previous studies reported by our 
group suggest that this is a more realistic estimate than 
the harmonic mean [2].

The lower confidence intervals of the back-trans-
formed pooled proportion ( piL ) is given by:

and the upper confidence intervals of the back-trans-
formed pooled proportion ( ̂piH ) is given by:

where t = t ± Zα/2

√
v . This procedure has been imple-

mented in the metan module of Stata which was used for 
this analysis.

Results
Coverage of single proportions
In the first part of our results, we compared the cover-
age of the FTT and logit transformed proportions at 
the extremes of magnitude of the proportions (Fig. 1). 
For extremely large proportions, the logit transfor-
mation has grossly inadequate coverage at values 
close to 1. For extremely small proportions and non-
extreme proportions, both logit and FTT have similar 
coverage.
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We then applied corrections to adjust for events equal 
to zero or events equal to the sample size in the simulated 
datasets. The corrected event count are given in expres-
sions {2} and {4} and we observe that by using corrections 
of 0.15 for the FTT and 0.5 for the logit transformation, 
both estimators achieved optimal coverage at both ends 
of extreme proportions (Fig. 1). These are helpful because 
at these extremes of proportions (0 and 1) the transform 
values also become very extreme and these corrections 
help mitigate this. For non-extreme proportions, both 

the FTT and logit transformations yielded similar cover-
age across all scenarios.

Width of the back‑transformed CI for single proportions
The subsequent analysis aimed to compare the mean 
width of the back-transformed confidence intervals 
(CI) obtained using both the transformations (Fig.  2). 
The FTT exhibited a smaller width of the CI compared 
to the logit transformation at both extremely small and 
extremely large proportions. The width of the confidence 

Fig. 1 Coverage probability under both transformations (single proportions)
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intervals remained the same with or without the conti-
nuity corrections employed (0.15 for the FTT and 0.5 for 
the logit transformation).

Variability of the FTT with sample size
The regression analysis showed that the highest variabil-
ity of the FTT occurred when the range of proportion 
was limited to quantiles 1 – 2 resulting in a very small 
range in proportions from 0.0044 to 0.0108 (Fig. 3, Panel 
A). Within this narrow range, the FTT varied by sam-
ple size quantile in a very miniscule range from 0.416 to 

0.423. As the range of proportion increased (quantiles 1 
– 7; proportions from 0.0044 to 0.0208), we observed a 
decrease in the observed variability by sample size quan-
tile as proportion changed the FTT much more com-
pared to sample size (Fig.  3, Panel B). When the range 
of proportions was increased to include quantiles 1 – 20 
(range of proportions 0.0044 to 0.0465) there was barely 
any significant variation by sample size quantile (Fig.  3, 
Panel C), and finally when quantiles 1 – 50 were included 
(range of proportions 0.0044 to 0.1054), no variability 
due to sample size quantile was discernable (Fig. 3, Panel 

Fig. 2 Width of the back-transformed CI under both transformations (single proportions)
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D), indicating that it was not relevant in relation to the 
changes due to the size of the proportion.

Performance in meta‑analyses
We analyzed and compiled results from the three sets 
of simulated meta-analyses generated which were for 
extremely small proportions, extremely large propor-
tions and non-extreme proportions as explained ear-
lier. For both extremely small and large proportions, 
the FTT based meta-analyses exhibited notably lesser 
relative deviation from the true proportion in compari-
son to the logit transformation based meta-analyses (as 
depicted in Fig. 4, panels A & C). The FTT consistently 
yielded narrower confidence intervals when compared 
to the logit transformation in both the scenarios, as indi-
cated in Fig.  4, panels B & D. For extremely small pro-
portions, the FTT demonstrated decreased width with 
a coverage probability (94.5%) close to the nominal level 

across simulation runs, surpassing the logit transforma-
tion which had 86% coverage. Similarly, for extremely 
large proportions, the FTT demonstrated decreased 
width of the confidence interval and coverage probability 
at the nominal level (95%), compared to the logit trans-
formation which had 87.5% coverage. When analyzing 
non-extreme proportions, both FTT and logit trans-
formed proportions demonstrated similar performance 
(Fig. 4) with no marked difference in deviation from the 
true proportion or in coverage of the confidence interval 
(95% with both transforms). All three meta-analytic sim-
ulated datasets are attached in the supplementary mate-
rial. We should emphasize here that non-monotonicity of 
FTT values is always seen when sample sizes differ and 
the proportion is held constant but this does not really 
matter because the impact of the proportion on the FTT 
value far exceeds that of changes in sample size as can be 
inferred from the results above.

Fig. 3 Variability of FTT with sample size quantiles (different color lines) for single proportions
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Application to a real world meta‑analysis
To illustrate the practical implications of our findings, 
we applied both the Freeman-Tukey (FTT) and logit 
transformations to a meta-analysis estimating the prev-
alence of hepatitis C virus (HCV) infections in the gen-
eral population of Nepal. This analysis includes a subset 
of five studies from an unpublished dataset containing 
28 studies [14]. The meta-analysis pooled proportions 

ranging from 0.001 to 0.034, reflecting the low preva-
lence of hepatitis C virus (HCV) infections in the stud-
ied population. Figure  5 presents the results, with the 
left panel using the FTT transformation and the right 
panel using the logit transformation.

The comparison between the two transformations 
highlights key differences. The FTT transformation 
results in a pooled prevalence estimate of 1.908 per 

Fig. 4 Performance of both transformations (meta-analysis)
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1000 observations (95% CI: 1.184 – 2.800) using the 
IVhet model, while the logit transformation produces a 
higher pooled estimate of 1.964 per 1000 (95% CI: 0.951 
– 4.050) with increased variability. The logit transfor-
mation also shows higher heterogeneity  (I2 = 71.8%, 
H = 1.88) compared to FTT  (I2 = 43.6%, H = 1.33), indi-
cating that the logit transformation leads to less stable 
estimates and wider confidence intervals, particularly 
for studies with extreme proportions.

Further, comparing meta-analysis models within the 
FTT-transformed dataset (left panel), we observe that 
the choice of model matters and both the inverse vari-
ance (IV) and DerSimonian-Laird (DL) random-effects 
models demonstrate differences in point estimation as 
well as precision. Even within transformation choice, 
the three models result in different point estimates and/
or precision Given that some degree of heterogeneity 
can occur by chance, selecting a model that properly 
handles overdispersion is essential. Since fixed-effect 
models do not have a mechanism for this, we focused 
on models that do, ultimately selecting IVhet based on 
the simulation results. This practical example corrobo-
rates our simulation findings that FTT compared to 
logit transformations are not equivalent and that on top 
of this choices about models to use for such synthesis 
matters too.

Discussion
Overall findings
This study compared the performance of the FTT with 
the logit transformation and the findings collectively sug-
gest that the FTT offers superior performance in terms 
of width of the confidence interval and coverage with 
both single proportions and meta-analyses. In addition, 
the FTT provided less deviation of the meta-analytic esti-
mate from the true parameter indicating its potential as 
the preferred method for application in meta-analysis.

We observed that by applying a correction to event 
numbers equal to either zero or ni of 0.15 (FTT) and 0.5 
(logit), the best coverage was obtained. While not directly 
an aim of this study, this is an important observation 
because it helps improve estimation. These corrections 
can be used as standard because they have no impact 
when the events observed are not zero or not equal to 
the sample size. Additionally, the FTT generally exhib-
ited a smaller mean width of the CI compared to the logit 
transformation. The findings in this study therefore indi-
cate that the FTT provides better coverage and narrower 
intervals for estimating proportions of an extreme size. 
Both transformations are generally robust and provide 
comparable results in scenarios of non-extreme propor-
tions. The FTT however remains the better choice with 
extreme prevalence proportions. For non-extreme pro-
portions, researchers can choose between the FTT and 
logit transformations based on their preferences and 
familiarity with the methods.

Implications for researchers
The debate surrounding the appropriate methodol-
ogy for meta-analysis of prevalence had been the sub-
ject of recent attention, initially sparked by the work by 
Schwarzer et  al. [7]. Miller’s original recommendation 
[6] has been found to lack sufficient supporting evidence 
and is likely flawed; however, this aspect seems to be 
underappreciated in the field, especially considering that 
Schwarzer et al. based their critique on Miller’s approach. 
Prior to Schwarzer’s criticism, we had already published 
a suggested modification to Miller’s proposal, which 
addresses these flaws and resolves the concerns raised 
[2, 8], but this contribution appears to have been over-
looked. The FTT, in reality, yields robust results when 
used in two-step meta-analysis approaches, the latter also 
having the added benefit of retaining the study weights 
and allowing choice of more robust meta-analysis mod-
els, such as the IVhet model [8]. Another paper by Röver 

Fig. 5 Forest plots of hepatitis C virus (HCV) meta-analysis with Freeman-Tukey transformation (left) and logit transformation (right) and utilizing 
three synthesis models (IVhet, FE (IV estimator) and RE (DL estimator). *IVhet, inverse variance heterogeneity model; FE (IV), fixed effect model 
with inverse variance estimator; RE(DL), random effects model with DerSimonian-Laird estimator
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et  al. also entered the discussion, highlighting a ’para-
doxical behavior’ in which FTT values differed by sample 
size, even when the proportion value remained constant 
[10]. Our findings, however, demonstrate that this issue 
does not translate into a problem for the use of FTT. 
The reason why this is not an issue is that the variability 
in FTT with even large variations in sample size is only 
equivalent to changes in a range of proportion sizes that 
are extremely small (~ 0.5% or 0.005) and the fluctuation 
in FTT values was also in a minuscule range of 0.416 to 
0.423 with sample size. Thus, the FTT varies in the third 
decimal place (0.007), a reason why it has little impact 
on meta-analysis results. These findings emphasize that 
while there might be FTT variability with sample size, the 
range of the proportion takes precedence and the varia-
bility of the FTT with sample size is miniscule compared 
to its variation with size of the proportion which explains 
why we can demonstrate no impact in practice..

In addition, in meta-analysis, the FTT consistently 
shows a lower relative deviation from the true proportion 
parameter, producing narrower confidence intervals and 
achieving better coverage than the logit transformation, 
both when the proportions are extremely small or large. 
These findings collectively highlight the potential advan-
tages associated with utilizing the FTT over the logit as 
the transformation of choice for meta-analysis of preva-
lence. This underscores the significance of methodologi-
cal choice in ensuring robust and accurate outcomes in 
the meta-analysis of prevalence.

Implications for practice
We provide evidence why the FTT is a strong choice of 
transformation in meta-analysis of prevalence, espe-
cially when proportions are extreme, outperforming the 
logit transformation in our simulation. The comparison 
between FTT and logit transformations in a real-world 
meta-analysis of hepatitis C virus (HCV) prevalence in 
Nepal (Fig.  5) highlights the superior performance of 
FTT, yielding narrower confidence intervals, lower het-
erogeneity, and more stable pooled estimates. The logit 
transformation, in contrast, exhibits higher variability 
and wider confidence intervals, particularly for studies 
with very low or high prevalence estimates. Additionally, 
our results emphasize that meta-analysis model selection 
further influences estimation accuracy. The IVhet model, 
when paired with FTT, provides the most robust pooled 
estimate, effectively handling overdispersion without 
inflating variance like the DerSimonian-Laird random-
effects model. The simulations also provide empirical 
evidence that even though the sample size alters the FTT 
value in addition to the proportion size, the sample size 
effect is so small that it does not impact the other benefits 

of this transform, and it still retains better performance 
for meta-analysis of prevalence.

The methods we discuss in this paper are all avail-
able via the metan  module in Stata. This module can 
be downloaded and installed by typing ssc install 
metan into the command window in Stata. The par-
ticular form of the FTT back transformation using the 
inverse of the meta-analytic variance which is discussed 
in this paper, is also available through this module using 
the option: tr(ftukey, iv).

Strengths and potential limitations
We should acknowledge that no single transformation 
is universally optimal, and researchers should care-
fully consider the characteristics of their dataset when 
selecting an appropriate method. We also caution that 
this study employed simulated datasets and while our 
findings provide valuable insights, it is essential to con-
sider the specific characteristics of the dataset under 
analysis. Different datasets may exhibit unique patterns, 
and researchers should carefully assess the suitability of 
the transformation selected based on their specific data 
properties.

Conclusion
The FTT seems to be the transformation of choice when 
contemplating aggregate data meta-analysis of preva-
lence proportions. The logit transformation works just as 
well when proportions are not extreme and is a suitable 
alternative in this situation. If the FTT transformation 
is chosen, care should be exercised regarding the form 
of back transformation utilized and we recommend use 
of inverse variance in lieu of mean sample size options 
when converting FTT back to natural proportions.
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