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Abstract 

Purpose This paper extends current propensity score weighting methods for causal inference to better understand 
disparities in healthcare access across multiple racial groups. By treating each racial group as a distinct entity (or 
“treatment”) in the causal inference framework, we can assess and evaluate heterogeneity in healthcare outcomes 
across various racial or ethnic categories. Furthermore, we leverage modern propensity score weighting techniques 
to address the challenges inherent to multiple group evaluations, such as violations of the positivity assumption, 
and compare the performance of different propensity score weights.

Methods We use generalized propensity score methods to assess racial disparities across 4 specific racial or ethnic 
groups: Whites, Hispanics, Asians, and Blacks. We first calculate weights that standardize the participants’ charac-
teristics and then compare their weighted outcomes. We consider four distinct measures (i.e., causal estimands) 
and estimation methods: the conventional average treatment effect on the treated (ATT), the ATT trimming, the ATT 
truncation, and the overlap weighted ATT (OWATT). These estimands are applied under a multi-valued “treatment” 
framework, where the said “treatment” is defined by non-manipulable racial or ethnic group memberships. Using data 
from the Medical Expenditure Panel Survey (MEPS), we assess disparities in healthcare expenditures across the 4 racial 
and ethnic groups.

Results We found significant disparities in healthcare expenditure between White participants and all the other racial 
or ethnic groups when using OWATT and ATT truncation. Conventional ATT and ATT trimming could indicate non-sig-
nificant difference due to larger variance estimates. Moreover, the conventional ATT was found to be the least efficient 
estimation method, even when its variance was estimated via non-parametric bootstrapping. Overall, the OWATT 
emerges as a promising estimation method; it retains the available information from all samples, avoids subjectiv-
ity (inherent to choosing thresholds by its competitors) and mitigates judiciously pernicious inferential effects (such 
as the inflated variance estimates) by extreme propensity score weights.

Conclusion We found that generalized propensity score weighting (GPSW) methods are valuable quantitative 
tools to standardize and compare characteristics as well as outcomes of non-manipulable groups. This helps assess 
disparities across multiple racial and ethnic groups, as demonstrated in this study. These methods offer flexible 
and semi-parametric analysis on the primary causal parameters of interest (such as the racial disparities), with straight-
forward and intuitive interpretations. In addition, when there is violation of the positivity assumption, OWATT serves 
as an excellent alternative due to its greater efficiency, evidenced by relatively smaller variance. More importantly, 
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the OWATT uses the entire dataset by assigning weights to all participants, regardless of their propensity score values. 
This feature of OWATT circumvents the need to specify user-defined thresholds, as required in ATT trimming or trun-
cation, and retains as much data information as possible, leading to more reliable estimation results.

Keywords Non-manipulable group membership, Survey sample, Multinomial regression, Overlap weights, Average 
treatment effect on the treated

Introduction
Despite advancements in healthcare delivery and uti-
lization, disparities persist across racial and ethnic 
groups in the United States [1, 2]. Ethnic and racial 
minorities continue to experience lower rates of health-
care utilization and adherence to prescribed treatments 
[3] and often receive different treatment or recommen-
dations from healthcare providers [4]. Consequently, 
these populations face worse health outcomes and lower 
life expectancy [3, 5, 6].

Statistical analyses aimed at estimating racial dispari-
ties often use standard methods but with a specific focus: 
comparing outcomes across racial and ethnic groups 
while adjusting for differences in a set of pre-specified 
baseline covariates. Such a comparison is often done 
by using propensity score weighting (PSW) methods 
[7], where the propensity score (PS) is the probability of 
being like a participant of a specific group, given one’s 
baseline characteristics. If we only have two groups to 
compare, estimated propensity scores are used to balance 
the covariates between the groups and compare their 
PS-weighted outcomes. When data are collected across 
multiple racial or ethnic groups, much of the current 
literature still emphasizes the use of separate covariate-
balancing and outcome comparisons two-by-two groups 
at a time [8–12]. Unfortunately, this analytic approach 
limits our ability to fully assess the data and may lead 
to misleading or erroneous results, since the propensity 
scores weighting are estimated based on different sub-
sets of the data set. With multiple groups, the analysis 
should extend beyond the binary propensity score to a 
generalized propensity score, where the probabilities 
of being like a participant of each of the specific groups 
are estimated at once. Using the entire data set. This 
“multi-category” version of the propensity score allows 
us to estimate adequately average outcomes and evaluate 
the necessary contrasts across different groups [13, 14]. 
While this all-encompassing solution is laudable, it how-
ever comes with its own major drawback: estimations of 
the generalized propensity scores often exacerbate issues 
related to the positivity of the propensity scores.

The positivity assumption, which is crucial for a 
valid causal inference [15], requires that the propen-
sity scores should be sufficiently bounded away from 0 
and 1 [16–18]. It assumes that all the most important 

covariate patterns in the population of participants 
are also present across the different groups in our data 
set. This may not be the case if there is an imbalance 
in the group allocation of participants, especially if we 
have low proportions of certain racial or ethnic groups 
(underrepresented groups). In this case, certain partici-
pants’ characteristics only apply to some of the groups. 
It may also be an issue when there a systematic covari-
ate imbalance across groups [19]. Unfortunately, viola-
tions of the positivity assumption (also referred to as 
lack of positivity) often occur in practice. Examples of 
such violation include the analyses of North Carolina 
birth weight [19, 20] and racial disparities in health care 
expenditure [21]. Violations of the positivity assump-
tion can lead to biased and inefficient (large standard 
error) estimations [22–25].

There are three mainstream methods for tackling the 
violations of positivity assumption: (i) propensity score 
trimming [26]; (ii) propensity score truncation [27–29]; 
and (iii) overlap weights (OW) [14, 22, 23]. These meth-
ods belong to a unified causal inference framework, the 
weighted average treatment effect (WATE), proposed by Li 
et al. [22]. The WATE centers around measuring the aver-
age treatment effect (ATE) under lack of positivity, which 
can be viewed as an “ATE-type” estimation problem. In 
addition to ATE, researchers might be interested in esti-
mating the average treatment effect on the treated (ATT). 
In assessing racial disparities, the “treated” refers to a 
chosen reference racial or ethnic group, such as “White” 
among White, Black, Hispanic and non-Hispanic Asian 
populations. To address the lack of positivity in ATT 
estimation, Liu et  al. [25] proposed the weighted aver-
age treatment effect on the treated (WATT) framework, 
which is centered around ATT estimation. Although 
the WATE framework has been applied to analyze racial 
disparities [7, 14, 21], there is limited work applying this 
recently proposed WATT framework. When we want to 
compare a group of participants to another specific one, 
which serves as a reference, such an assessment of dis-
parities is often well-suited under the WATT framework. 
Therefore, in this paper, we consider the application of 
WATT to assess racial or ethnic disparities in healthcare 
expenditures using the 2003–2004 Medical Expenditure 
Panel Survey (MEPS), using generalized propensity score 
methods for multiple racial or ethnic groups.
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The MEPS is a comprehensive set of large-scale surveys 
that collect detailed information on healthcare costs, uti-
lization, and insurance coverage among families and indi-
viduals, their medical providers, and employers across 
the United States [30]. As the most complete source of 
data on healthcare expenditure and utilization, MEPS 
provides insights into the specific health services Ameri-
cans use, their frequency, associated costs, and payment 
methods, as well as data on the scope and availability of 
health insurance for U.S. workers (https:// meps. ahrq. 
gov// mepsw eb/).

To investigate heterogeneity in healthcare spend-
ing across four racial groups (i.e., White, non-Hispanic 
Black, Hispanic and non-Hispanic Asian participants), 
we consider four estimands from the WATT framework: 
the conventional ATT, ATT trimming, ATT truncation, 
and overlap weighted ATT (OWATT). These methods 
offer flexible and semi-parametric estimations of racial 
disparities. By “flexible”, we mean that these approaches 
differ from conventional outcome regression meth-
ods—which interpret the results based on the estimated 
regression parameters and may be sensitive to model 
misspecifications such as including incorrect predictors 
or choosing an inappropriate model. WATT framework 
uses background information to create pseudo subpopu-
lations with balanced covariate distributions [31, 32]. 
By “semi-parametric”, we refer to the models used to 
estimate the generalized propensity scores (and calcu-
late the weights). These models can vary by their nature; 
they might include more straightforward, interpretable 
options like generalized linear regression (parametric) or 
alternative nonparametric machine learning models [33]. 
In addition, the interpretations of the methods we choose 
are straightforward and intuitive, as they directly define 
the quantities that we intend to measure, which facili-
tates a clearer insight of the racial disparities.

Our work also extends the findings of Cook et  al. 
and Li and Li [7, 9], who used propensity scores under 
a binary treatment for racial disparities analysis. Our 
generalization to multi-valued treatment provides addi-
tional insights to practical investigators. This approach 
contrasts with the use of pairwise comparisons that only 
evaluate data two-by-two groups at a time, which can 
miss broader patterns and trends by not utilizing the 
groups are part of the full dataset.

The remainder of this paper is organized as follows. 
Section "Racial Disparity in Healthcare Expenditures" 
reviews the statistical framework for the WATT for mul-
tiple groups. In Section "Concluding Remarks", we apply 
these WATT to the MEPS data to examine racial dispari-
ties in healthcare expenditures. We especially compare 
the methods based on effective sample sizes, covari-
ate balance performance, and both point and variance 

estimates. We conclude the paper, in Section  4, with 
some remarks, discussions, and future orientations.

Method
Average treatment effect on the treated in the context 
of racial disparities
We denote the outcome (healthcare expenditure) by 
Y  and the racial or ethnic group categories byZ , with 
Z ∈ {1, . . . ,K } andK ≥ 2 . We consider the general-
ized propensity scores defined byei(X) = Pr(Z = i|X) , 
i = 1, . . . ,K . It can be modeled by a multinomial 
regression model, an extension of the binomial logis-
tic regression, using an observed covariate vector 
X = (X1,X2, . . . ,Xp) , which contains information from 
multiple characteristics measured on the participants. 
The generalized propensity score ei(X) is the probabil-
ity of being the race of group i ( i = 1, . . . ,K  ) given the 
covariatesX , subject to K

i=1 ei(X) = 1.
We must point out that race and ethnicity are immu-

table in the sense that they cannot be experimented on, 
manipulated, or assigned to study participants as it is 
the case with treatment assignments [34, 35]. We do not 
view race or ethnicity, in this paper, as inherent biologi-
cal factors that relate people to regions of ancestry, vari-
ous genotypes and phenotypes [34, 35]. Although not 
manipulable, we view race and ethnicity as social con-
structs; hence we consider racial race or ethnic groups 
as entities from which we want to standardize charac-
teristics across, following Li and Li [7]. This allows us to 
understand how race and ethnicity play out in people’s 
lives. Therefore, we use the generalized propensity score 
as a quantitative tool to summarize the relationship of 
covariates and racial categories. In addition, the gener-
alized propensity scores ei(X) here can be well-defined 
and modelled statistically, serving as a balancing score for 
balancing covariate distributions [14, 22] across multiple 
race groups, ensuring fairer comparisons on healthcare 
expenditures through weighting.

We work within the potential outcomes framework 
of Neyman and Rubin [15, 36, 37]. For the sake of com-
parison, we use the White race as the “treated” group of 
interest, i.e., the main group of interest (or the reference 
group) from which we will compare all the other groups. 
The goal is to create pseudo or counterfactual minority 
population, based on specific weights, which we will then 
compare to the White group, following Li and Li [7]. By 
comparing the White group to a counterfactual minor-
ity population whose covariate distributions are similar 
to that of the White population, we are interested in how 
disparities impact other races’ health expenditure com-
pared to the White group. The difference is estimated 
between any two groups, with the understanding that 
each participant has multiple potential outcomes [15, 37], 

https://meps.ahrq.gov//mepsweb/
https://meps.ahrq.gov//mepsweb/
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one for each racial or ethnic group (possibly contrary to 
the fact)–-under the stable unit treatment value assump-
tion (SUTVA) [16, 37]. Let Y (i) be the potential outcome 
if the participant is in group i ( i = 1, . . . ,K  ), while the 
observable outcome is such that Y = Y (Z) , by the con-
sistency assumption, where Z(Z ∈ {1, . . . ,K }) indicates 
which group the participant belongs to.

Let Z = j be the reference group and Z = i(i �= j) 
denotes one of the other groups. The measure (i.e., causal 
estimand) of interest is the average treatment effect on 
the treated (ATT):

While the first term E[Y |Z = j] can be determined 
from data, the second term is not as it involves counter-
factual outcomes Y (i) for participants who are in group 
i , but being evaluated at the reference group j . There-
fore, we use the SUTVA and consistency assumption 
and leverage the data from the other group i to impute 
the potential outcome Y (i) in the reference group j. This 
is done by weighting the observed outcomes of those in 
the group i(i  = j) , where the weights ensure the balance 
of the covariate distributions between the other group i 
and the reference group j . Readers are referred to the end 
of Appendix A.1 for technical details and justification for 
this weight balancing process.

To estimate ATT, we need some additional statistical 
assumptions, which are listed in Appendix A.1 as tech-
nical details. Then, we can use the following weighting 
estimator:

where wi,j(xl) =
ej (x)

ei(x)
 (i  = j) is the weight for a participant 

l in group i, (i  = j
)
, Dlj = I

{
Zl = j

} indicates that the partici-
pant l is in group j , and I{·} is the indicator function.

The estimator τ̂atti,j  requires that we estimate the gener-
alized propensity scores ei(x), for ∀i ∈ {1, . . . ,K } , by 
specifying a model. For this paper, we consider the multi-
nomial regression model log(ei(x)/e1(x)) = x′αi , where 
αi is a regression coefficient vector, for i = 2, . . . ,K , to 
estimate the generalized propensity score êi(x) = ê1(x)exp(x′α̂i) , 
and plug it in the above weighting estimator, where 
ê1(x) =

(
1+

∑K
i=2exp(x′α̂i )̂ei(x)

)−1
.

Based on statistical theory, the estimator τ̂atti,j  is consist-
ent to the true ATT under large sample if the general-
ized propensity scores are estimated consistently [14, 25]. 
Nevertheless, this estimator can be extremely unstable 
(i.e., with large variance) when the generalized propensity 
score estimates êi(x) are too small (close to 0) for some 

τatti,j = E
[
Y
(
j
)
− Y (i)|Z = j

]
= E[Y |Z = j] − E[Y (i)|Z = j].

(1)τ̂atti,j =

∑N
l=1 DljYl

∑N
l=1 Dlj

−

∑N
l=1 wi,j(xl)DliYl∑N
l=1 wi,j(xl)Dli

,

participants, which can lead to extreme weights wi,j(xl) . 
These small values of êi(x) can happen for various rea-
sons, including by happenstance, model misspecification, 
random error, or intrinsic characteristics of the true gen-
eralized propensity score model. Participants who have 
such extreme generalized propensity score values are 
also referred to as violating the positivity assumption (as 
defined in Section "Introduction"). The statistical details 
about the positivity assumption can also be found in 
Appendix A.1.

In the following Section "Effective Sample Size", we 
outline some general strategies for addressing the viola-
tion of positivity based on the estimated generalized pro-
pensity scores from participants. We then specify how we 
especially address this issue in ATT estimation by intro-
ducing the weighted average treatment effect (WATT) 
framework [25]. All technical details can be found in 
Appendix A.2.

Addressing the Violation of Positivity in ATT Estimation
In literature of causal inference methodology, there are 
three mainstream methods for addressing the violation of 
positivity in our knowledge: (i) trimming [26]; (ii) trunca-
tion [27–29]; and (iii) overlap weights (OW) [14, 22, 23].

Trimming excludes participants whose generalized pro-
pensity scores êi(xl) fall outside of a pre-specified range 
[α, 1] , for some user-selected α , and i = 1, . . . ,K  with i  = j 
[14, 38]. Following Li et al. [23], after trimming, we re-run 
the same multinomial model, re-estimate the propensity 
scores êi(xl) and update from the weights wi,j(xl) using 
the remaining data. For binary treatment, we require the 
estimated propensity scores to be smaller than 1− α in 
ATT estimation. However, it is important that for mul-
tiple treatment groups, the êi(xl) is on the denominator 
of the propensity score weights, and thus extremely small 
êi(xl) tends to result in extreme large weights. Therefore, 
for multiple treatment groups, we only keep the partici-
pants have generalized propensity scores within [α, 1].

Truncation, also known as “weight-capping”, assigns to 
participants whose generalized propensity scores êi(xl) are 
below the threshold α a fixed weight wi,j(xl) = êj(xl)/α , 
i.e., their generalized propensity scores are capped by the 
threshold value in the final estimation stage.

We need to point out that ATT estimation through both 
trimming and truncation is subjective since it involves ad 
hoc selections of a user-specified threshold parameter(s) 
α . this often leads to loss of information and sensitivity of 
the estimated racial disparities [23, 25, 39]. In contrast, 
the overlap weights (OW) avoid eliciting such a threshold 
by shifting the target of estimation to where the demand 
for positivity is essentially reduced (see details in Appen-
dix A.2 for the definitions of OW).
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By construction and by their nature, trimming, trun-
cation, and OW change their target (i.e., the estimand 
and underlying population). For example, trimming by 
α = 0.1 only keeps participants whose generalized pro-
pensity scores êi(xl) are in [0.1, 1]. The shifted target is 
then based on those participants who cannot have their 
true generalized propensity scores outside of interval 
[0.1, 1]. Similarly, for truncation and OW, they have their 
own shifted target population. This is shifting phenom-
enon is often referred to as moving the goalpost [26]. This 
population shift has an important implication in practice, 
that is, the aforementioned methods always focus on par-
ticipants with sufficient positivity, so that the treatment 
effects of interest (here the racial disparities) can always 
be estimated with good efficiency.

Weighted Average Treatment Effect on the Treated (WATT)
When the interested measure is ATT, we need to be 
more specific about the use of above methods in dealing 
with the lack of positivity in ATT estimation. In fact, the 
methods in Section "Effective Sample Size", are within 
the framework of WATT [25]. The WATT is a class of 
methods centering around ATT.

In this paper, building on the work of Liu et al. [25], we 
use the generalized propensity score designed for multi-
ple race groups and considered four estimation methods 
from the WATT framework to assess the racial dispari-
ties in healthcare expenditure: (i) the conventional ATT; 
(ii) ATT trimming; (iii) ATT truncation; and (iv) overlap 
weighted ATT (OWATT). Methods in (ii)—(iv) especially 
target populations where the demand on the positivity is 
reduced.

The estimation of (ii)—(iv) follows similarly the weight-
ing estimator (1) for ATT, with different respective 
weights; details are provided in Appendix A.2. For vari-
ance estimation, we use the non-parametric bootstrap 
method [40], which has shown valid for the WATT 
framework [25].

Racial disparity in healthcare expenditures
When assessing racial or ethnic disparities, the variable 
race or ethnicity (viewed as a “treatment group” variable) 
is mainly used to capture and adjust for differences in 
covariates across racial or ethnic groups and determine 
how they influence the outcome. Because race and eth-
nicity are social constructs that are not manipulable, they 
cannot be used to offer a causal interpretation of the dif-
ference in outcomes between groups of participants via 
the standard potential outcome framework. Neverthe-
less, according to the definition of disparity in health-
care provided by the Institute of Medicine (IOM), i.e., 
the difference in treatments assigned to society groups, 
such disparity can be well explained by health status and 

treatment preference [41]. Hence, controlling for health 
status covariates is expected to assist in the estimation 
and interpretation of disparities in healthcare. In a sense, 
comparisons of racial disparities in healthcare share a 
similar nature to the comparisons that control for con-
founders in a causal sense [11, 14]. Therefore, we can 
leverage the generalized propensity scores to balance 
the distributions of the covariates across racial or ethnic 
groups and apply generalized propensity score weight-
ing methods on the Medical Expenditure Panel Survey 
(MEPS) data to examine the impact of racial or ethnic 
disparities on healthcare expenditure [8–11].

For this analysis, we consider the MEPS data from 2003 
to 2004, where healthcare records and information from 
20,446 participants were collected, including 9,830 White 
(48.1%), 5,280 Hispanic (25.8%), 1,431 Non-Hispanic 
Asian (7.0%), and 3,905 Non-Hispanic Black (19.1%) par-
ticipants [9]. Thus, the data set has a sufficiently large 
sample size, and the consistency of ATT estimator is 
expected as long as the generalized propensity scores are 
estimated consistently, as we discussed in Section "Effec-
tive Sample Size". The baseline covariates were separated 
into Socioeconomic Status (SES) variables and health sta-
tus variables. Following the IOM recommendations, esti-
mates of healthcare disparities were adjusted for health 
status factors but not for SES variables [42]. Therefore, 
following Li and Li [16] and McGuire et al. [42], we only 
included health status variables to estimate the general-
ized propensity scores to assess covariate balance across 
the different racial or ethnic groups. The list of health 
status variables included gender, marital status, age, body 
mass index (BMI), MI, self-reported health status, SF-12 
mental component summary, smoke, exercise, diabetes, 
asthma, stroke, cholesterol, cancer, and blood pressure. 
We use the total medical expenditure as the outcome and 
choose the White group as the treated group to which we 
compare all the other racial or ethnic groups.

To ensure that the analysis results accurately repre-
sent the underlying target population, we incorporate 
the survey weights of each participant into our analysis. 
Each participant’s survey weight is available in the data-
set as the “PERWT” variable. Incorporating these survey 
weights addresses potential biases and imbalances in the 
sampling process through a two-stage approach [43, 44]. 
First stage: Generalized propensity scores are estimated 
using a weighted multinomial regression that involve sur-
vey weights. In this model, the “PERWT” variable affects 
the estimation of model parameters by weighting the loss 
function or likelihood. As a result, the distribution of gen-
eralized propensity scores—and the effectiveness of the 
weighting approach in balancing covariates—is implicitly 
influenced by the survey weights. Second stage: During the 
estimation phase, we construct a combined weight for each 
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participant by multiplying the normalized generalized pro-
pensity score weight with the normalized survey weight. 
This step is equivalent to applying our generalized propen-
sity score weighting framework to a rescaled outcome: the 
survey-weighted healthcare expenditure. Therefore, we 
incorporate the survey weight variable in two ways: first, 
by including it in the generalized propensity score model, 
and second, by using it to rescale the outcome.

By systematically integrating survey weights into both 
stages, our methodology aims to correct for sampling 
biases, ensuring more reliable and representative analysis 
for the underlying target population.

Overlap and covariates balance
To assess the overlap of generalized propensity scores 
for the four racial or ethnic groups and evaluate the bal-
ance of covariates, we first estimate the propensity scores 
using multinomial regression on these groups, adjusting 
for the health status variables as aforementioned. The 
survey weights are incorporated into the multinomial 
regression by setting the weight argument. In Fig. 1, each 
plot represents the distribution of generalized propensity 
scores for each racial or ethnic group and is categorized 
by the true racial group to which the participants belong.

These plots first evaluate the overlap of the generalized 
propensity scores across different racial groups. Overall, 
the estimated generalized propensity scores demonstrate 
a moderate degree of overlap across the groups, suggest-
ing partial comparability of the distribution. Additionally, 
Fig. 1 reveals that some generalized propensity scores are 
near 0 and 1. This pattern indicates a potential violation 
of the positivity assumption, which can pose challenges 
when using propensity score weighting approaches, such 
as conventional ATT. Therefore, we shift from conven-
tional ATT to other weighted ATT approaches to handle 
this problem, such as trimming, truncation, and overlap 
weighting, and further compare their performance in 
ATT estimation.

To explore how the four approaches perform differently 
in balancing covariates, we apply the absolute standard-
ized mean differences to measure the overall difference 
in each covariate across multiple groups and show a 
love plot in Fig. 2 [25, 45, 46]. It is obvious that most of 
the covariates can achieve better balance across groups 
after imposing weights for Conventional ATT, Trunca-
tion ATT, and Overlap Weighted ATT (OWATT). How-
ever, trimming ATT weights can lead to larger imbalance 
for most of the covariates compared to unadjusted. In 

Fig. 1 Histogram of the estimated generalized propensity score for each racial group
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comparison, OWATT leads most of the covariates have 
absolute standardized mean differences closer to 0 and 
bounded by 0.1, which can be considered a better covari-
ate balance overall.

Effective sample size
To evaluate how well the information contained in the 
different weights we considered helps capture the essence 
of the data at hand and measures the efficiency of the 
weighting schemes, we estimated the effective sample 
size (ESS) across the different treatment groups [19, 20]. 
For a tilting function h(X), the ESS for group i is defined 
as

The ESS is a measure of the efficiency of the weight-
ing scheme considered. It provides an approximate 
sample size of a simple random sample that is required 
to obtain an estimate with a similar level of precision 

ESShi =

(∑N
l=1

∑K
i=1Dliwi(Xl)

)2

∑N
l=1

∑K
i=1Dliw

2
i (Xl)

.

than a weighted sample [19]. The closer the ESS to the 
original sample size the better. Since we used the White 
group as the pre-specified “treated” group, the ESS for 
the White group is the whole sample of 9830 White 
participants. With trimming and truncation, we illus-
trate the result in terms of different threshold, includ-
ing α ∈ {0.05, 0.1, 0.15} . As indicated in Table 1, the ESS 
decreases in all three racial groups other than White 
with conventional ATT, ATT trimming, ATT truncation, 
and OWATT compared to the original sample size (the 
“Unadjusted” row). In an overall sense, the conventional 
ATT and ATT trimming have smaller ESS compared to 
OWATT and ATT truncation. As trimming more partici-
pants, the ESS for that racial group tends to decrease.

Specifically, the ESS for the non-Hispanic Asian group 
is equal to 155.01 for the conventional ATT, which is 
small compared to the original sample size of 1,431 par-
ticipants. This implies some extreme weights may exist 
in non-Hispanic Asians, which dilutes the contribu-
tions of some of the participants in the estimation. This 
result is consistent with the observations made in Fig. 1 
and the findings of Li and Li [14]. The impact of these 

Fig. 2 Covariate balance under different ATT methods. Unadjusted: the simple difference in means of the two comparison groups 
without weighting; Conventional ATT: the original ATT estimation based on propensity score weighting but without handling positivity assumption 
violation; Trimming ATT: ATT estimation based on the subsample with propensity scores in [ α, 1 ], α = 0.10 ; Truncation ATT: ATT estimation 
based on the entire sample but with propensity scores capped at α = 0.10 ; Overlap Weighted ATT: ATT estimation based on the entire sample 
with individual-level overlap weights
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extreme weights was not adequately mitigated by trim-
ming at α = 0.1 as the ESS is equal to 260.80, which did 
not improve much compared to the original sample size. 
However, the OWATT and ATT truncation can increase 
the ESS for Non-Hispanic Asian to 1105.31 and 1118.54 
( α = 0.05 ) respectively, which are noticeable improve-
ments. This outperformance of OWATT and trunca-
tion ATT is also reflected in Hispanic and Non-Hispanic 
Black group, where the ESS of trimming ATT and con-
ventional ATT are smaller. Although truncation ATT has 
ESS larger than OWATT as the increase of threshold α , 
the larger α implies more original information is to be 
overwritten.

Estimated causal effects of racial disparity
To be more comprehensive, we considered three thresh-
olds in estimating ATT with trimming or truncation: α = 
0.05, 0.10, and 0.15. The choice of a specific threshold has 
an impact on the results we will obtain since the choice 
influences how many participants’ generalized propen-
sity scores will be capped with α in truncation and how 
many participants will be dropped via trimming. Set-
ting a higher threshold means more participants will be 
trimmed and have more information loss. To adequately 
compare the efficiency of the different methods, the vari-
ance (and thus the standard error [SE]) was estimated 
using the non-parametric bootstrap method with 1000 
replicates.

The estimated health expenditure disparities across the 
different racial or ethnic groups under different methods 
and varying thresholds for trimming and truncation are 
presented in Table  2. Overall, all the methods agree on 
that there are some significant disparities in healthcare 
expenditure between White and Non-Hispanic Asian 
group. This result can be interpreted as, on average, 
White participants should have paid more in healthcare 
expenditure compared to Non-Hispanic Asian partici-
pants had they had similar distributions of the covariates 
as the White participants. Almost all methods consider 
the magnitude of the disparities between these two 
groups to be more than $2,500. Specifically, when using 
OWATT, the healthcare expenditure for White popula-
tion is expected to be $2436.67 more than that for Non-
Hispanic Asian population who shared similar covariate 
characteristics distribution.

For White and Hispanic, the conventional ATT and 
ATT trimming (α = 0.15) reach a different conclusion 
compared to the other methods; they found no signifi-
cant disparity in healthcare expenditure. As trimming 
too much (such as atα = 0.15 ) leads to substantial loss 
of information, the bootstrap variance for ATT trim-
ming is also very large and leads to a p-value that is larger 
than 0.05. Among the other methods that led to signifi-
cant differences, the estimated differences in healthcare 
expenditures between the White group and the Hispanic 
group range from $1383.05 (ATT truncation (α = 0.05) ) 
to $2386.84 (OWATT). In the comparison, for White and 
Non-Hispanic Black participants, all the methods other 
than ATT trimming (α = 0.10&α = 0.15) indicate a sig-
nificant disparity. Overall, when compared with White 
group, the estimated differences in healthcare expendi-
ture for Non-Hispanic Black are smaller than that of the 
other two minority groups, ranging from $ 611.14 (ATT 
truncation(α = 0.15) ) to $2077.52 (OWATT).

The estimation of the differences in healthcare expendi-
ture varies substantially across different methods. As 
discussed at the end of Section "Effective Sample Size", 
OWATT, ATT trimming, and ATT truncation are shift-
ing the target population from that is targeted by the 
conventional ATT, in order to handle the lack of positiv-
ity (under which the conventional ATT cannot often be 
well estimated). Therefore, the estimation results from 
these approaches are not expected to be the same as those 
from the conventional ATT. Case in point, compared to 
the conventional ATT, the OWATT, the ATT trimming, 
and the ATT truncation all reveal larger racial dispari-
ties between White and Non-Hispanic Asian groups and 
between White and Hispanic groups. In addition, the con-
ventional ATT indicates that Hispanic group and Non-
Hispanic Black group have the smallest disparity from 
White group. However, ATT trimming, ATT truncation, 

Table 1 Effective sample size of each racial or ethnic group

1 Unadjusted means the simple difference in means of the two comparison 
groups without weighting
2 The original ATT estimation based on propensity score weighting but without 
handling positivity assumption violation
3 Overlap weighted ATT 

White Hispanic Non-
Hispanic 
Asian

Non-
Hispanic 
Black

Total

Unadjusted1 9830 5280 1431 3905 20,446

Conventional 
ATT 2

9830 1837.92 155.01 1792.98 13,615.91

OWATT 3 9830 3677.27 1105.31 2128.12 16,740.70

ATT Trimming 
(0.05)

9830 2728.68 495.78 2242.28 15,296.74

ATT Trimming 
(0.1)

9830 2645.63 260.80 1617.05 14,353.48

ATT Trimming 
(0.15)

9830 1559.88 106.04 1087.12 12,583.04

ATT Truncation 
(0.05)

9830 3218.58 1118.54 2543.93 16,711.05

ATT Truncation 
(0.1)

9830 4040.73 1302.78 3130.08 18,303.59

ATT Truncation 
(0.15)

9830 4521.17 1359.23 3452.28 19,162.68
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and OWATT show an opposite pattern, i.e., the disparities 
are more substantial for White vs. Hispanic and White 
vs. Non-Hispanic Asian, with the difference being at least 
greater than $1383.05. Under the same threshold, the 
estimated disparities between Non-Hispanic Asian and 
White are similar for ATT trimming and ATT truncation. 
Nevertheless, compared to ATT truncation, the estimated 
expenditure difference is larger for ATT trimming when 
the Hispanic group is the comparator and smaller when 
Non-Hispanic Black is the comparator.

Furthermore, the estimated racial disparity in 
health expenditure increases with more participants 
being trimmed or capped when comparing Hispanic 
and Non-Hispanic Asian participants to White but 
decreases when comparing Non-Hispanic Black to 
White participants. Regardless of the groups being 
compared, the difference in healthcare expenditure 
using OWATT seems to be consistent and remains 
around $2,000, with the minimum difference being 
$2,077.52 (White vs. Non-Hispanic Black) and the 
maximum equal to $2,436.67 (White vs. Non-Hispanic 
Asian).

As seen in Table  2, compared to the conventional 
ATT and the ATT trimming, the OWATT standard 
error estimates are always smaller among all three 
comparisons, regardless of which threshold being 
selected. This indicates that OWATT achieves higher 
efficiency than these two other methods in ATT esti-
mation. Indeed, when comparing White and Non-His-
panic Black groups, OWATT demonstrates the highest 
efficiency in ATT estimation, achieving the smallest 
bootstrap variance—smaller even than that of trunca-
tion ATT. Although ATT truncation results in slightly 
smaller standard errors when more participants’ gen-
eralized propensity scores are truncated ( α = 0.15 ), 
OWATT remains a promising alternative, because it 
preserves participants’ information and avoids relying 
on the subjective choice of the truncation threshold.

Concluding remarks
Summary
In this paper, we apply the WATT framework of Liu 
et  al. [25], combined with the generalized propensity 
score methods [14] to analyze the MEPS data to assess 

Table 2 Point Estimates and SEs for racial disparity among three comparisons

1 The original ATT estimation based on propensity score weighting but without handling positivity assumption violation
2 Overlap weighted ATT 

Comparison Method Point Estimate Standard Error P-value

White vs. Hispanic Conventional ATT 1 626.79 405.55 0.122

OWATT 2 2386.84 225.31  < 0.001

ATT Trimming ( α = 0.05) 1627.18 269.84  < 0.001

ATT Trimming ( α = 0.10) 2324.48 393.45  < 0.001

ATT Trimming ( α = 0.15) 3047.6 5126.87 0.552

ATT Truncation ( α = 0.05) 1383.05 258.14  < 0.001

ATT Truncation ( α = 0.10) 1898.53 207.72  < 0.001

ATT Truncation ( α = 0.15) 2191.3 192.84  < 0.001

White vs
Non-Hispanic Asian

Conventional ATT 1597.95 579.48 0.006

OWATT 2436.67 304.96  < 0.001

ATT Trimming ( α = 0.05) 2679.41 421.02  < 0.001

ATT Trimming ( α = 0.10) 3307.70 416.10  < 0.001

ATT Trimming ( α = 0.15) 2634.83 768.38  < 0.001

ATT Truncation ( α = 0.05) 2336.69 302.04  < 0.001

ATT Truncation ( α = 0.10 2552.4 267.32  < 0.001

ATT Truncation ( α = 0.15) 2634.19 257.70  < 0.001

White vs
Non-Hispanic Black

Conventional ATT 875.51 279.11 0.002

OWATT 2077.52 222.06  < 0.001

ATT Trimming ( α = 0.05) 873.23 323.08 0.007

ATT Trimming ( α = 0.10) 663.21 413.79 0.109

ATT Trimming ( α = 0.15) 611.14 1506.99 0.685

ATT Truncation ( α = 0.05) 942.46 267.42  < 0.001

ATT Truncation ( α = 0.10) 912.97 255.73  < 0.001

ATT Truncation ( α = 0.15) 918.9 247.73  < 0.001
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racial or ethnic disparities in healthcare expenditures. 
We specifically highlight OWATT as a useful method 
within the class of WATT. OWATT mitigates the sub-
jectivity inherent to trimming and truncation methods 
and has smaller estimated standard errors (higher effi-
ciency) than both the conventional ATT method and 
the ATT trimming.

Furthermore, by modelling the generalized propen-
sity scores and using weights that standardize group-
specific covariates, we compare each minoritized 
racial or ethnic group to the White group (as refer-
ence). The conventional ATT shows that the difference 
between the White and Hispanic participants in health 
expenditure is non-significant, while with ATT trim-
ming (except for threshold of 0.15), ATT truncation, 
and OWATT, we demonstrate noticeable disparities 
in healthcare expenditure between White participants 
and the Hispanic population at the 0.05 significance 
level. For Non-Hispanic Black and Non-Hispanic 
Asian, most of the methods agree on the existence of 
healthcare spending disparities. Even though the racial 
disparity estimation differs by approach and choice of 
threshold, all the methods addressing the lack of posi-
tivity agree that such disparities between White pop-
ulation and the three minorities cannot be ignored. 
ATT trimming sometimes disagree with the common 
conclusions reached by other approaches by yielding a 
large variance estimation  [47], which is probably due 
to loss of information.

Our paper also indicates that while trimming or 
truncating participants can reduce variance in some 
scenarios, we risk losing valuable information, as 
shown by a reduction in effective sample size (ESS) 
(Table 1). Finally, when extreme propensity scores are 
present, the ATT trimming yields smaller variance 
than the conventional ATT, but the OWATT typically 
outperforms the ATT trimming, with performance 
similar to ATT truncation, while circumventing the 
issues of overweighting individual participant’s contri-
bution or overall information unnecessarily and sub-
jectively thresholds. We have also seen that, in fact, 
excessive trimming may even reverse the conclusions 
reached by other methods. By preserving more data, 
OWATT offers a greater accuracy, making it a more 
promising choice for researchers and clinicians seek-
ing minimal subjectivity and maximum data retention.

Discussion
In addition to our findings, we acknowledge some limita-
tions related to our method and propose potential exten-
sions for future research.

First, similar to ATT trimming and truncation, 
OWATT shifts the goalpost (i.e., the underlying 

population of interest) to the overlap population [26]. 
While the conventional ATT estimates the healthcare 
expenditure disparities of the reference race group by lev-
eraging outcomes from all participants of other groups, 
the OWATT achieves the same objective. It does not trim 
or truncate any observations but uses smooth weighting 
to select suitable comparators in the other groups (see 
details in Appendix A.2 and Fig. 3 in Appendix 1). How-
ever, as opposed to the conventional ATT, the OWATT 
does not induce any extreme weights when the general-
ized propensity scores of participants in the non-refer-
ence groups are close to 0. As such, the OWATT targets 
a slightly different subpopulation of participants among 
those who are not in the reference group (compared to 
the conventional ATT). Hence, the OWATT offers a bet-
ter trade-off between efficiency and bias reduction than 
the ATT trimming and the truncation.

Similar to the OWATT, both the ATT trimming and the 
ATT truncation also move the goalpost of inference but 
require an additional tuning parameter: the trimming or 
truncation threshold. Though data-driven strategies for 
choosing optimal thresholds were described by Crump 
et al. [26], unfortunately, they did not clearly demonstrate 
how a consistent and adequate threshold can be selected 
and implemented for practical applications. The choice 
of α = 0.10 as the threshold is just a rule-of thumb, 
which does not always work in practice [39]. Therefore, 
such a choice for an appropriate threshold can be driven 
by subjective considerations, which may leave open the 
possibility for a fishing expedition to reach a desired sig-
nificant p-value. Like many statistical methodologies, the 
OWATT is also involves inherent trade-offs. It makes a 
minor change in the target population and results inter-
pretation (compared to the conventional ATT) but gains 
significantly in estimation and efficiency without the bur-
den to select arbitrarily tuning parameters. In addition, it 
includes all data information available and produces rea-
sonable propensity score weights [19, 48, 49].

As a side, since we used overlap weights, we must clar-
ify that the interpretation of these weights in the WATT 
framework differs from the WATE framework of Li et al. 
[22]. Specifically, our interpretation cannot be equated 
to targeting the “clinical equipoise” often referenced by 
researchers in related fields [50, 51].

Furthermore, the current paper opens several pos-
sible extensions. First, we can easily apply the method 
to the average treatment effect on the control (ATC) 
when the effect on the controls (i.e., some non-reference 
groups) is of interest. We just need to pre-specify which 
group should be the control group and follow in a simi-
lar fashion the work we have presented. The racial dis-
parity results can be useful in closing the healthcare gap 
by designing interventions that mitigate the disparities. 



Page 11 of 16Liu et al. BMC Medical Research Methodology           (2025) 25:64  

To guide policy decision-making and propose wiser 
policies that promote racial equality in health care, the 
results presented here can be framed in the context of 
specific minoritized racial or ethnic groups. Second, 
while we have used bootstrap for variance estimation, it 
can be important to investigate other methods, such as 
the model-based sandwich variance method or the wild 
bootstrap [21]. Third, our results are adjusted for health 
status variables, which may be different when considering 
SES variables. A future study can investigate racial dis-
parities in healthcare expenditure while considering both 
health status and SES covariates [8–12]. Furthermore, it 
is also of interest to consider augmented or doubly robust 
estimators of the class of weighted average treatment 
effect on the treatment (WATT), by combining inverse 
probability weighting and additional outcome modeling 
to possibly achieve the semiparametric efficiency bound 
and mitigate the effect of extreme propensity scores [49, 
52–55]. To our knowledge, there is no publication for 
such an augmented estimator for the general WATT. 
Other weighting strategies may also apply, including cali-
bration weighting for alternative covariate balance esti-
mators [34–37], data-driven-based trimming, or weight 
modification [24, 25, 39, 40].

In addition, in our analysis, we leverage survey weights 
to provide a more valid estimation and interpretation for 
target population compared to previous studies analyz-
ing the same data set. Although we handle the extreme 
weights derived from generalize propensity scores 
(implicitly mitigate possible extreme survey weights), we 
did not develop the methods to handle extreme survey 
weights specifically. In survey statistics, Gelman’s meth-
ods [56, 57] are adopted by sample survey researchers 
when dealing with extreme survey weights, presenting 
a promising future direction for combining them to our 
WATT framework. Finally, we can also consider apply-
ing the estimator proposed in this paper to survival out-
comes [58, 59], multi-source data [60, 61], and conformal 
inference [62].

Appendix 1
Details for statistical methodology
A.1 Statistical assumptions for consistent ATT estimation
We follow all notations made in Section "Racial Dispar-
ity in Healthcare Expenditures". To identify and esti-
mate ATT from observational data, there are two crucial 
assumptions:

Assumption 1 (Unconfoundness) Y (i) ⊥ I{Z = i}|X , 
for ∀i ∈ {1,2, . . . ,K };

Assumption 2 (Positivity/Overlap) P(ei(X) > 0) = 1 
for ∀i ∈ {1,2, . . . ,K }\j,

where the symbol ⊥ indicates independence of random 
variables

Assumption 1 implies that all the important con-
founders (variables associated with both Y (i) and 
Zfor ∀i ∈ {1,2, . . . ,K } ) are available in our data and are 
included in the covariate vector X . This ensures that 
the propensity score ei(X) can be a balancing score, 
i.e., Y (i) ⊥ I{Z = i}|ei(X). While the unconfounded-
ness assumption is not verifiable (for instance, through 
a statistical test), it can hopefully be assessed and evalu-
ated via domain knowledge, in practice, by field experts. 
The use of directed acyclic graphs (DAGs) has played an 
important role in this regard [63, 64]

Assumption 2 is the positivity assumption we alluded 
to previously. It means that for all participants in the race 
groups other than the reference group j , they should have 
positive generalized propensity scores that are strictly 
greater than zero. In other words, they must have some 
similar characteristics to the participants in the reference 
race group j for allowing causal comparison

Under the above two assumptions, the ATT can be re-
written using the following formula:

It can also be verified that, P
(
Z = j

)
 can also be written 

as E
[
ej(X)

ei(X)
I{Z = i}

]
 . Therefore, this formula illustrates 

that why we can use estimator (1) for estimating ATT 
consistently, and why we can refer the weight ej(X)ei(X)

 as the 
balancing weight, since it re-weights the outcome of 
group i to be alike that of group j.

τatti,j = E[Y |Z = j] − E[Y (i)|Z = j]

=
E
[
Y I

{
Z = j

}]

E
[
I
{
Z = j

}] −
E
[
I
{
Z = j

}
E{Y |Z = i,X}

]

E
[
I
{
Z = j

}]

=
E
[
Y I

{
Z = j

}]

P
(
Z = j

) −
E
[
E
[
I
{
Z = j

}
|X

]
E{Y |Z = i,X}

]

P
(
Z = j

)

=
E
[
Y I

{
Z = j

}]

P
(
Z = j

) −
E
[
P
(
Z = j|X

)
P(Z = i|X)−1E{Y I{Z = i}|X}

]

P
(
Z = j

)

=
1

P
(
Z = j

)E
[
Y I

{
Z = j

}
−

P
(
Z = j|X

)

P(Z = i|X)
Y I{Z = i}

]

=
1

P
(
Z = j

)E
[
Y I

{
Z = j

}
−

ej(X)

ei(X)
Y I{Z = i}

]
.



Page 12 of 16Liu et al. BMC Medical Research Methodology           (2025) 25:64 

A.2 Details of methods dealing with lack of positivity in ATT 
estimation
As mentioned in Section "Effective Sample Size" and Sec-
tion "Estimated Causal Effects of Racial Disparity", to 
circumvent the lack of positivity for participants whose 
generalized propensity scores are extreme, there are 
three main methodologies: (i) trimming; (ii) truncation; 
and (ii) overlap weights (OW).

When looking at the reference race group to estimate 
ATT, trimming is executed only in other race groups, 
where whose generalized propensity scores fall out-
side of [α, 1] are to be excluded [14, 38]. As a remark, in 
the introduction of Section "Effective Sample Size", this 
range is [α, 1] and the trimming is conducted for par-
ticipants from all groups. This difference is because the 
original literature by Crump et  al. [26] proposing this 
trimming method targets the ATE, while in our paper, we 
target ATT or ATT-like measures. It can be verified that 
once those who are in other race groups with generalized 
propensity scores fall outside of [α, 1] are excluded, there 
are no longer extreme weights in ATT estimation. Thus, 
trimming requirements for ATT are less strict than those 
for ATE.

In our study, except for the pre-determined refer-
ence group j , participants whose generalized propensity 
scores fall outside of the range [α, 1] in the comparison 
group i(i  = j) are trimmed, where i is in {1, . . . ,K }\j . 
Then, the generalized propensity scores for all remain-
ing participants should be re-estimated and updated and 
by re-performing the multinomial regression from the 
remaining data [23].

As opposed to trimming, truncation does not exclude 
participants but requires a threshold to determine which 
participant’s generalized propensity score to amend. A 
participant in group whose generalized propensity score 
is less than α will be set to α otherwise, the generalized 
propensity scores remain unchanged.

Once the generalized propensity scores for all partici-
pants are either trimmed or truncated, the estimation of 
ATT follows the same framework as discussed in Section 
"Overlap and Covariates Balance", including the deriva-
tion of individual weights and ATT estimates. Trunca-
tion has been shown to be efficient in handling extreme 
weights and is considered to have a good bias-variance 
trade-off [65]. The estimands for trimming and trunca-
tion generally deviate from the conventional ATT since 
the weights are altered and depend on the choice of the 
threshold. As indicated in Section "Estimated Causal 
Effects of Racial Disparity", both ATT trimming and 
ATT truncation fall in the general class of estimands, the 
WATT.

Moreover, instead of relying on a user-specified trim-
ming or truncation threshold, Liu et  al. [25] proposed 

the overlap weighted average treatment effect on treated 
(OWATT) by using the OW in the WATT framework. To 
introduce OWATT, we first review the set-up of a general 
WATT.

For simplicity, we first consider the general WATT 
under a binary treatment framework, defined by

where ω0h(X) = ω0(X)h(X) . The weights ω0(X) =
e(X)

1−e(X) 
with e(X) = P(A = 1|X) shape the covariates distribution 
of non-reference race group to be more alike the refer-
ence race group by adjusting the contribution of non-ref-
erence race group participants. The function h(X) is the 
“tilting function”, which further weights the covariate 
distribution of the non-reference race group participants 
whenever needed. For example, h(X) = I{e(X) ≤ 1− α} 
defines the ATT trimming, where we only select par-
ticipants with propensity score below the 1− α thresh-
old in the controls to estimate the treatment effect. This 
can be useful when some non-reference race group 
participants violate the positivity assumption, but as 
discussed in Section "Effective Sample Size", the selec-
tion of the α parameter needs careful consideration 
and can often be ad-hoc and subjective. In addition 
to trimming, the WATT also includes the (i) conven-
tional ATT, with h(X) = 1 ; (ii) ATT truncation, where 
h(X) = I{e(X) < 1− α} + (1− α)α−1ω0(X)

−1
I{e(X) ≥ 1− α} ; and (iii) 

OWATT for which h(X) = e(X)(1− e(X)) [25].
The sample weighting estimator for WATT under a 

binary treatment is:

where ω̂0h(Xl) = ω̂0(Xl)ĥ(Xl) , ω̂0(Xl) =
ê(Xl)

1−ê(Xl)
 , and 

ê(Xl) the estimated propensity scores.
What distinguishes OWATT from the other estimands 

is its distinctive feature when it comes to the violation 
of the positivity assumption: it smoothly reduces the 
influence of extreme propensity scores as e(X) moves 
away from 0.5 and gets closer to 1. This impacts the con-
tributions of the participants’ outcomes to the overall 
treatment effect estimation; participants with extreme 
propensity scores are allocated smaller weights ω0h(X) . 
Thus, the contribution of participants from the non-ref-
erence race group i ( i  = j ) to the weighted mean outcome 
is adjusted accordingly, which reduces their unduly influ-
ence on the overall assessment of the treatment effect.

To better understand the OWATT, we illustrate the 
trends of different propensity score weights for non-
reference race group participants under a binary treat-
ment in Fig. 3 in Appendix 1. In this figure, we compare 

τwatt0,1 = E[Y |Z = 1]−
E[ω0h(X)(1− Z)Y ]

E[ω0h(X)(1− Z)]
,

τ̂watt0,1 =

∑N
l=1 ZlYl∑N
l=1 Zl

−

∑N
l=1 (1− Zl)ω̂0h(Xl)Yl∑N
l=1 (1− Zl)ω̂0h(Xl)

,
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the propensity score weights defined by the conven-
tional ATT, ATT trimming (using α = 0.1 ), ATT trun-
cation (using α = 0.1 ), and OWATT. As shown in Fig. 3 
in Appendix 1, ATT weights increase to infinity as the 
propensity score approaches to one, while ATT trim-
ming sets the weights to zero for participants with pro-
pensity scores below the trimming threshold ( α = 0.1 ) 
and ATT truncation caps the weights at this threshold. 
In contrast, only OWATT assigns non-zero, bounded, 
and different weights to all individual participants, 
including those with extreme propensity scores. Under 
sufficient positivity (e.g., when all propensity scores are 
below 0.75), OWATT produces a weight curve similar 

to the other methods, maintaining alignment with 
other approaches. However, in scenarios lacking suf-
ficient positivity, OWATT displays a gently increas-
ing curve, effectively up-weighting non-reference race 
group participants with higher propensity scores while 
ensuring weights remain bounded to avoid extreme val-
ues. This allows OWATT to remain robust by provid-
ing stable weight distributions and avoiding extreme 
weights. Therefore, OWATT maintains reliable esti-
mates by appropriately weighting non-reference race 
group participants based on their propensity scores 
without discarding any observations.

Fig. 3  Propensity score weights on the control participants defined by different estimands

For multiple treatments, where Z ∈ {1,2, . . . ,K } and 
K ≥ 3 , we choose j ∈ {1,2, . . . ,K } to indicate the treated 
(or reference) group. The generalized propensity score 
is given by

and indicates the probability of being assigned to race 
group i given the covariates X . The sum of general-
ized propensity scores across all the treatment groups ∑K

i=1ei(X) is equal to 1.
The generalized WATT estimand for multiple treat-

ment groups is defined by

where ωi,h(X) =
ej(X)h(X)

ei(X)
 are the weights that allow the 

covariate distribution(s) of participants in group i to be 

ei(X) = Pr(Z = i|X), i ∈ {1,2, . . . ,K },

τwatti,j = E[Y |Z = j]−
E
[
ωi,h(X)I{Z = i}Y

]

E
[
ωi,h(X)I{Z = i}

] ,

similar to those from the reference race group j . Its cor-
responding estimator is given by

where ĥ(Xl) is the estimated tilting function given 
the covariates for participant l is Xl(l = 1, . . . ,N ) , 
and Dli = I{Zl = i} is the indicator for the group 
membership.

To estimate the generalized OWATT, we use the tilt-
ing function

which is proportional to the harmonic mean of the gen-
eralized propensity scores. One can verify that, when 

τ̂watti,j =

∑N
l=1 DljYl

∑N
l=1 Dlj

−

∑N
l=1 êj(Xl )̂ei(Xl)

−1ĥ(Xl)DliYl
∑N

l=1 êj(Xl )̂ei(Xl)
−1ĥ(Xl)Dli

,

h(X) =

(
K∑

i=1

1

ei(X)

)−1

,
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K = 2 , the tilting function is the usual overlap tilting 
function h(X) = e1(X)e2(X) = e1(X)(1− e1(X)).

Appendix 2
Additional statistical analyses
In this section, we additionally provide some statistical 
analysis as references.

B.1 Diagnostic analysis of multinomial regression 
for propensity Scores
To validate the multinomial regression model for esti-
mating propensity scores, we provide some assess-
ments of model diagnostic to reflect how the model fit 
the data.

First, Nagelkerke’s R2 is 0.243 and McFadden’s R2 is 
0.104, which imply that the multinomial regression 
model for the generalized propensity score achieves a 
moderate and reasonable fit of the data [66–69]. Specifi-
cally, the generalized propensity score model captures a 
significant portion of the variability but also leaves some 
rooms for further improvement.

Second, we also explore the area under the curve (AUC) 
for each racial group as shown in Table 3 in Appendix 2. 
From this, we can see that the model has moderate classi-
fication ability to identify White participants, acceptable 
classification ability to identify Hispanic and Non-His-
panic Black participants and has good ability to discrimi-
nate Non-Hispanic Asian. Therefore, in an overall sense, 
the multinomial propensity score regression model fit 
the dataset moderately good, still have room to improve 
though.

Table 3 AUC of multinomial regression model for each racial 
group

White Hispanic Non-Hispanic 
Asian

Non-Hispanic 
Black

AUC 0.70 0.70 0.76 0.70

B.2 Probability Density Plots of WATT Estimates with Different 
Methods
For the variance estimation in this paper, we used the 
bootstrap approach by repeatedly estimating ATT under 
different estimators. The bootstrap method approximates 
the sampling distribution for each estimator and captures 
the variability of estimates through repeated estimations. 
To present further insights into how these estimates be 
distributed, we provide density plots for the point esti-
mates based on four different estimators, derived from 
1000 bootstrap replicates.

Fig. 4 Density distribution of ATT estimates by comparisons (α = 0.1) 

For here, we focus on α = 0.1 , which is one of the typi-
cal thresholds for trimming ATT and truncation ATT. 
As shown in Fig.  4  in Appendix  2, the ATT estimator 
without any adjustment for extreme weights exhibits the 
largest variance. When the truncation threshold is 0.1, 
the variance pattern of OWATT is similar to that of ATT 
truncation, particularly in the comparisons between 
White and Hispanic and between White and Non-
Hispanic Asian. The OWATT achieves a reduction in 
variance compared to other estimators in the White vs. 
Non-Hispanic Black comparison, which is aligned with 
the results in Table 2.

B.3 G‑computation approach for ATT estimation
Additionally, we apply G-computation approach to 
estimate the racial disparity in healthcare expenditure 
among multiple comparisons [70]. First, we fit the out-
come model by letting healthcare expenditure as the 
outcome, including all the covariates that used in the 
multinomial regression for previous generalized PS esti-
mation and race indicators as predictors. The survey 
weights are defined in the weight argument to account 
for the possible imbalance in the survey stage. After-
wards, we predict the potential outcomes or coun-
terfactual health expenditures for the treated group, 
i.e., White, under all treatment levels. For example, for 
White vs. Hispanic, we take the difference of the proten-
tional health expenditures for the White group and the 
protentional health expenditures for the White group if 
they are Hispanic. Since G-computation approach does 
not involve propensity score, we disregard the violation 
of positivity assumption here. The results of ATT esti-
mation with G-computation approach are provided in 
Table 4 in Appendix 2.

Table 4 ATT estimation with G-computation approach

Comparison Point Estimate Standard Error P-value

White vs. Hispanic 1394.81 168.63  < 0.001

White vs. Non-Hispanic 
Asian

1368.29 226.55  < 0.001

White vs. Non-Hispanic 
Black

889.74 226.72  < 0.001
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When use G-computation approach, all the compari-
sons indicate noticeable racial disparities in healthcare 
expenditure between all the three other racial groups and 
White group. The conclusion for G-computation is aligned 
with the conclusions when using PS-based approaches that 
discussed in this paper. G-computation, consistent with 
OWATT, ATT trimming, and ATT truncation methods, 
presents a more substantial disparity between White and 
Hispanic groups as well as between White and Non-His-
panic Asian groups. The estimates of ATT between White 
and Non-Hispanic Asian and between White vs. Non-His-
panic Black are close to the estimates of the conventional 
ATT without handling extreme weights. In general, for 
each comparison, G-computation leads to smaller esti-
mates of racial disparities in healthcare spending compared 
to the three methods mainly discussed in this paper. This 
approach could also be an alternative as ATT estimation, 
which is not based on generalized propensity scores but 
rely on the outcome model specification.
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