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Abstract
Background HIV transmission and disease progression may be driven by associations HIV risk behaviors have with a 
constellation of alcohol, other substance, and mood-related conditions (CASM). However, observational study-based 
measures of these associations are often prone to unmeasured confounding. While meta-analysis offers a systematic 
approach to summarize effect sizes across studies, the validity of these estimates can be compromised if similar biases 
exist across studies. Our analysis assesses the likelihood that unmeasured confounding explains meta-analysis-derived 
measures of association between CASM and HIV risk behaviors, and provides bias-adjusted estimates.

Methods We first conducted systematic reviews and meta-analyses to assess associations between CASM conditions 
and four HIV risk behaviors (medication non-adherence, unprotected sex, transactional sex, and multiple sexual 
partners). We then adjusted for potential unmeasured confounders using two methods designed for meta-analyses - 
Point Estimate and Proportion of Meaningfully Strong Effects methods. We selected “risk propensity” as an illustrative 
and potentially important unmeasured confounder based on the extant literature and mechanistic plausibility.

Results In analyses unadjusted for unmeasured confounding, 89% (24/27) of odds ratios (ORs) show strong evidence 
of a positive association, with alcohol use and stimulant use emerging as dominant risk factors for HIV risk behaviors. 
After adjusting for unmeasured confounding by risk propensity, 81% (22/27) of ORs still showed strong evidence of 
a positive association. Associations between mood-related conditions and HIV risk behaviors were more robust to 
unmeasured confounding than associations between alcohol use and other substance use and HIV risk behaviors.

Conclusion Despite residual confounding present in constituent studies, there remains strong evidence of 
associations between CASM and HIV risk behaviors as well as the clustered nature of CASM conditions. Our analysis 
provides an example of how to assess unmeasured confounding in meta-analysis-derived measures of association. 
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Background
Human immunodeficiency virus (HIV) remains a glob-
ally persistent public health issue, affecting an estimated 
39 million people living with HIV (PLHIV) at the end of 
2022, and leading to 630,000 deaths in 2022 from HIV-
related causes [1]. While progress has been made to reach 
the 95-95-95 goals, shortcomings remain, as there were 
an estimated 1.3 million additional cases in 2022, 660,000 
of which were reported in the African region [1]. A con-
stellation of alcohol (e.g., alcohol use disorder), other 
substance (e.g., tobacco, opioid, and stimulant use disor-
ders), and mood-related (e.g. depressive and generalized 
anxiety disorders and chronic pain) conditions (CASM), 
have a high co-prevalence with HIV and appear to be 
important facilitators for HIV transmission and disease 
progression. Alcohol users in sub-Saharan Africa (SSA) 
were found to have 1.61 (95% CI 1.44–1.80) times the 
odds of having HIV compared to non-alcohol users [2], 
and PLHIV in high-income countries have an estimated 
1.2–2.4-fold greater prevalence of alcohol use disorder, 
major depression, generalized anxiety, and drug use dis-
order than that among non-PLHIV [3]. An estimated 11% 
and 26% of PLHIV and male PLHIV respectively in SSA 
smoke cigarettes [4], and 22% of PLHIV in Nigeria have 
anxiety disorders [5]. An estimated 31% (95% CI 26–38%) 
of PLHIV on antiretroviral therapy (ART) in SSA have 
significant depressive symptoms [6], and 18–81% of 
various PLHIV populations have major depression [7]. 
An estimated 25–90% [8], 50–70% [9], 16.8% [10], and 
17–64% of PLHIV in the United States have chronic pain, 
are current smokers, have substance use disorders, and 
used an illicit drug in their lifetime, respectively. These 
comorbidities remain present across age, sex, and gender 
differences [3, 7, 11–14], and studies have suggested bio-
logical pathways that CASM contributes to HIV disease 
and progression [15–19].

While associations between CASM and HIV risk 
behaviors have been studied in depth, including medi-
cation non-adherence [20–32] and risky sexual behav-
iors [33–40], observational study-based measures are 
inherently prone to unmeasured confounding. That is, 
the influence of factors not included in an analysis that 
may be the true drivers of results observed. Obser-
vational study results risk such scenarios since only a 
finite group of infinite potential risk factors are hypoth-
esized and measured. Furthermore, composite exposure 
measures (e.g. substance use) prevent single exposure 
association estimates, and variation in sensitivity and 
specificity of CASM screening and diagnosis tools and 
HIV risk behavior measurement scales add to the 

ambiguity of conclusions drawn by these observational 
studies. Despite these shortcomings, observational stud-
ies remain essential ways to understand public health 
phenomena, for ethical and practical reasons. While 
meta-analysis offers a systematic approach to summarize 
effect sizes across studies by aggregating data, the valid-
ity of these estimates can be compromised by bias from 
residual unmeasured confounding in observational con-
stituent studies. Furthermore, confirmation bias has led 
to systematic inclusion of more common potential con-
founders while excluding others from routine consider-
ation [41].

Our objective was to assess the likelihood that unmea-
sured confounding explains meta-analysis-derived 
measures of association between CASM and HIV risk 
behaviors, and to provide corresponding bias-adjusted 
estimates. Understanding the extent to which presumed 
causal associations between CASM and HIV risk behav-
iors are confounded can help identify integrative preven-
tive strategies that complement the traditional HIV care 
cascade by addressing CASM (Fig.  1). We hypothesized 
that risk propensity (e.g., an increased preference to act in 
ways having elevated potential for negative consequences 
[42–45]) is an important unmeasured confounder 
between CASM conditions and HIV risk behaviors and 
selected it as our primary potential confounder of inter-
est. Risk propensity has been associated with CASM [42, 
43] and HIV risk behaviors [44, 45] and was not adjusted 
for in any constituent studies across our unadjusted anal-
yses. We also hypothesized that the strength of unmea-
sured confounding by risk propensity would serve as 
a useful benchmark for the strength of other potential 
unmeasured confounders. We hypothesized that distrust 
of medical institutions (DIM) may also be an important 
confounder and selected it as a secondary potential con-
founder of interest, as it has been associated with both 
our exposures and outcomes of interest [57–60].

Methods
First, we describe our analyses unadjusted for potential 
unmeasured confounders, conducted to derive summary 
estimates for associations between CASM conditions and 
HIV risk behaviors. Second, we describe how we ana-
lyzed these summary estimates for potential unmeasured 
confounding [46, 47].

Analyses unadjusted for potential unmeasured 
confounding: systematic reviews and meta-analyses
We carried out 28 systematic reviews and performed 
corresponding meta-analyses to estimate the association 
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between seven CASM (alcohol, depression, anxiety, 
pain, tobacco, opioids, stimulants) and four HIV risk 
behaviors (medication non-adherence, unprotected sex, 
transactional sex, and multiple sexual partners) (Supple-
mentary Box 1; Figures S1-S26; Supplementary Box 2; 
Figures S27-S52). Our recently published meta-analysis 
characterizing the association between stimulants and 
HIV risk behaviors describes the methodology in detail 
and is reported elsewhere [48]. Briefly, we searched the 
PubMed database between July 2019-January 2021, fil-
tering for English-language and human studies with no 
restrictions on setting, population, study design, or year. 
A single reviewer viewed abstracts from all search results 
and reviewed in full studies meeting inclusion criteria. 
Inclusion criteria required (1) the exposure of interest 
with a comparison group, (2) the outcome of interest, 
and (3) an odds ratio (OR) with corresponding 95% CI 
or other data from which ORs could be ascertained. To 
prevent overrepresentation of any study, one measure 
of association was used per constituent study. We used 
adjusted estimates when available. If multiple popula-
tion groups or variations of exposure or outcome were 
presented, a pooled OR and 95% CI estimate was calcu-
lated [49]. If pooling was not possible, a series of deci-
sion rules was used: (1) we focused on the subgroup most 
commonly reported across all other constituent studies, 
the timeframe with the highest likelihood of exposure 
preceding the outcome, and the highest-level exposure 
and/or outcome stratum; (2) we prioritized an unad-
justed OR including all subgroups over any particular 

subgroup-adjusted OR; (3) we harmonized directionali-
ties (e.g., protected sex rather than unprotected sex) [49]; 
and (4) we excluded studies with composite exposure or 
outcome measures that might misclassify the exposure or 
dilute its effect.

Medication non-adherence refers to non-adherence to 
medication for HIV and/or hepatitis C virus (HCV), and 
no restrictions were placed on reporting method (e.g., 
self-reported adherence, visual analog scales, MEMs 
caps). Unprotected sex refers to condomless sex and 
includes all relevant measures (e.g., inconsistent condom 
use, condomless sex within specified recall times). Trans-
actional sex refers to measures of sexual activity in which 
money or gifts were exchanged for sexual acts; we aggre-
gated data on “buyers” and “sellers.” Multiple sexual part-
ners refers to having multiple concurrent or subsequent 
sexual partners, and we considered different magnitudes 
and recall times. Exposure definitions were used as per 
individual study.

Our 28 systematic reviews yielded 27 measures of asso-
ciation (there were no eligible studies associating pain 
and transactional sex), 26 of which included ≥ 2 studies 
and therefore were amenable to meta-analyses (only one 
eligible study associated pain and multiple sexual part-
ners). Random effects meta-analyses were conducted in 
RStudio, Version 1.3.1093, and Stata/IC, Version 15.1. 
We assessed heterogeneity in each meta-analysis by 
I-squared, tau-squared (τ²), and the Q-statistic.

Fig. 1 Conceptual diagram of CASM and HIV risk behavior
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Analyses adjusted for potential unmeasured confounding
To assess how robust our meta-analysis-derived mea-
sures of association were to unmeasured confounding, 
we used the Point Estimate method and the Proportion 
of Meaningfully Strong Effects method (PMSE) [46, 47, 
50–54]. The Point Estimate method is most suitable for 
single studies or for meta-analyses with low or no het-
erogeneity (e.g., τ² = 0), whereas PMSE is most suitable 
for meta-analyses with greater heterogeneity, albeit with 
a requirement of ≥ 10 studies. Neither approach requires 
specifying the prevalence of the unmeasured confounder. 
Both approaches allow interactions between the exposure 
(X), unmeasured confounder (U), and outcome (Y) [46, 
47, 52, 54], and require the assumption that unmeasured 
confounders of interest are not completely collinear with 
any variables controlled for in constituent studies. To 
employ these methods, ORs were converted to risk ratios 
(RR) [54] using the square root transformation [55]. Fig-
ure  2 illustrates the interdependence of methods and 
parameters, and Table 1 lists key inputs used.

Point estimate method
The Point Estimate method entails calculating an E-value 
and an E-value 95% CI lower limit (LL) for associations 
of interest. Meta-analyses yield “g-values” rather than 
“E-values,” which pertain to single studies. Since they 
are mathematically equivalent to E-values, both terms 
are grouped together hereon. E-values quantify how 
strongly an unmeasured confounder would need to be 

associated with the exposure (minimum risk ratio RRXU) 
and outcome (minimum risk ratio RRUY) to fully explain 
the observed association (RRXY) [56], conditional on 
the measured covariates [54]. The E-value 95% CI lower 
limit (LL) quantifies the strength of the unmeasured con-
founder necessary for the 95% CI of the observed and 
likely confounded association to contain the null value. 
An E-value greater than both RRXU and RRUY indicates 
that unmeasured confounding cannot fully explain RRXY 
[54]. First, the E-value and 95% CI LL were calculated 
using the formula:

   E-value = RRXY + SQRT (RRXY × ( RRXY − 1 )) (1)

We used the inverse of the RR when the point estimate or 
95% CI LL was below 1 to yield defined values, and 95% 
CI LLs were set to 1 if the 95% CI LL RR values were less 
than 1 [54], since an uncertainty range including the null 
already indicates sufficient association with the unmea-
sured confounder to explain RRXY.

We performed a sensitivity analysis to assess the rela-
tive magnitude of our E-values by using distrust in medi-
cal institutions (DIM) as an alternative unmeasured 
confounder [56]. To gauge if an E-value is “small” or 
“large,” it is useful to place it in context of RRXU and RRUY 
values corresponding to other, similar, unmeasured con-
founders [56]. This could indicate, for example, that an 
association with a seemingly large E-value is rather weak 
to confounding if associations between the exposure and 

Fig. 2 Parameter map for sensitivity analyses accounting for potential unmeasured confounding. Literature-derived input parameters: RRC
XY: unadjusted 

meta-analysis-derived risk ratio (RR), presumed to have unmeasured confounding; RRT
XY: true RR estimate, corrected for presumed unmeasured con-

founding; RRXU: RR between the exposure and U; RRUY: RR between U and the outcome; τ²: heterogeneity between studies. User-specified input pa-
rameters: q: minimum threshold (RR scale) of a meaningfully strong effect; r: the minimum proportion of constituent studies with true effects above q 
required to indicate moderate to strong evidence of an effect; p: proportion of heterogeneity (τ²) due to variation in confounding bias. Output parameters: 
E-value: Minimum confounding strength (risk ratio (RR) scale) by an unmeasured confounder that could explain RRC

XY); Bias factor: maximum amount 
the unmeasured confounder could impact RRC

XY, derived from RRXU and RRUY, applied to RRC
XY to calculate RRT

XY; p̂(q): the proportion of studies that 
have scientifically meaningful strong effects (RR > q); Ĝ(r, q): the minimum confounding strength required to lower p̂ to < r; T̂(r, q): the minimum bias 
factor required to lower p̂ to < r
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outcome with a comparable potential confounder are 
relatively high-magnitude [51]. In accord with recom-
mendations, we describe E-values that exceed “reference 
RRs” (RRXU and RRUY where the unmeasured confounder 
is DIM rather than risk propensity) as “very strong,” those 
within the range of reference RRs as “moderately strong,” 
and those less than reference RRs as “likely not strong” to 
unmeasured confounding.

Second, we estimated the lower bound estimate of the 
true measure of association (RRT

XY) by calculating the 
bias-adjusted RR [47, 54], using a bias factor to “correct” 
the confounded measure of association (RRc

XY). The 
bias factor quantifies the maximum amount by which 
an unmeasured confounder could alter RRT

XY [54] and 
is derived from RRXU and RRUY (Table  1). We assumed 
that RRXU differs between two subcategories of CASM 
conditions (1: alcohol, tobacco, opioids, and stimulants 
(ATOS); 2: depression, anxiety, and pain (DAP)) because 
they had distinct clustering patterns, potentially repre-
senting differential associations with risk propensity. The 
bias factor was calculated by [54]:

 B = (RRUY×RRXU) / (RRUY+ (RRXU−1))  (2)

The bias-adjusted RRs (and 95% CIs) were calculated by: 

 RRT
XY ≥ RRC

XY / B (if RRXY > 1) (3)

 RRT
XY ≤ RRC

XY × B (if RRXY < 1)

Proportion of meaningfully strong effects method (PMSE)
We used PMSE for meta-analyses with heterogeneity 
(τ² > 0), sufficient numbers (≥ 10 studies, k), and robust 
parametric confidence intervals (as determined by 
0.15 ≤ p̂(q) ≤ 0.85; p̂(q) defined below). The PMSE method 
assumes a normal distribution of population effects 
across studies to account for (1) dispersion of individual 
study point estimates from a hypothesized “true effect” 
size and (2) statistical error commensurate with the num-
ber of studies. This is done to prevent using “statistically 
significant” pooled estimates that comprise few studies 
with meaningfully strong effects and/or effects in the 
opposite direction of association (52).

The PMSE first assessed the strength of evidence for 
each meta-analysis by estimating p ̂(q): the proportion 
of studies in a meta-analysis likely to meet or exceed a 
user-specified threshold of meaningfully strong effect 
(q). We set q = 1.10 (risk ratio (RR)) since all meta-anal-
yses analyzed had positive directions of association, and 
additionally assessed q = 0.90 to consider the possibility 
of an association in the opposite direction. For example, 
p̂(q = 1.10) = 0.2 means that 20% of individual studies in a 
given meta-analysis are likely to yield risk ratios of 1.10 

Table 1 Input parameters used in sensitivity analyses
Input parameter Value Reference
All sensitivity analyses
Meta-analysis pooled risk ratios of CASM with HIV risk behaviors Tables 2 and 3 (Figure S53 for secondary analysis) Figures 

S27-S52
RRXU 1.54 (ATOS1 and RP2)

1.02 (DAP3 and RP)
[42, 43]

RRUY 1.40 (RP and medication non-adherence)
1.71 (RP and unprotected sex, transactional sex, mul-
tiple sexual partners)

[44, 45]

Proportion of Meaningfully Strong Effects
Estimated heterogeneity (τ²) τ² from meta-analysis statistical output Table S1
Mean bias factor across studies Tables 2 and 3 (single bias factor per meta-analysis as-

suming generalizable)
Correspond-
ing RRXU and 
RRUY values

Proportion of heterogeneity (τ²) due to variation in confounding bias 0.80
(assumed high heterogeneity of bias across studies)

[53]

Threshold (q) for scientifically meaningfully strong effect size 1.10; 0.90 [46, 47]
Minimum proportion of constituent studies with true effects above q 
deemed to indicate moderate to strong evidence of an effect (r)

0.20 if 10 ≤ k ≤ 15
0.10 if k > 15

[47]

Tail Above for q = 1.10
Below for q = 0.90

RR > 1 indi-
cates causative 
effect, RR < 1 
indicates pro-
tective effect

1 Alcohol, tobacco, opioids, and stimulants
2 Risk propensity
3 Depression, anxiety, and pain
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or higher. Larger p ̂(q) values indicate stronger evidence 
and suggest the meta-analysis is robust to unmeasured 
confounding (47). We used the following recommended 
criteria to categorize strength of evidence by p̂(q): p̂(q) < r 
(weak), r ≤ p̂(q) ≤ 0.70 (moderate), p̂(q) > 0.70 (strong), ref-
erencing values used in existing literature (47). Here, “r” 
is a user-specified threshold for the minimum propor-
tion of true effects above q needed to suggest evidence 
for causation. Given the observational nature of included 
studies in our analysis, we interpret evidence for causa-
tion as evidence for association suggesting causation. 
Per pre-established guidelines (47), we set r equal to 0.20 
for meta-analyses with < 15 studies and equal to 0.10 for 
meta-analyses with ≥ 15 studies. Thus, for a meta-analysis 
of 30 studies, p ̂(q = 1.10) > 0.10 implies sufficient evidence 
of causation in RRC

XY since more than 10% of studies 
have true effect RRs above 1.10.

Second, for each meta-analysis, we used E-value ana-
log parameters T̂(r, q) and Ĝ(r, q) to determine the 
magnitude of unmeasured confounding necessary to 
reduce p ̂(q) below r (suggesting RRC

XY contains residual 
confounding). T̂(r, q), analogous to the bias factor used 
in single studies, reflects the minimum bias capable 
of reducing p ̂(q) to less than r. Ĝ(r, q), analogous to the 
E-value used in single studies, indicates the minimum 
values of RRUY and RRXU capable of reducing p ̂(q) to less 
than r. Put another way, a meta-analysis can be consid-
ered robust to unmeasured confounding if T̂(r, q) > the 
bias factor or Ĝ(r, q) > RRXU and RRUY. Given r = 0.10, 
q = 1.10, and k ≥ 15, these conditions would indicate that 
more than 10% of studies have true RRs > 1.10 and that 
RRC

XY is a plausible estimate of RRT
XY.

Analogous to the method used for the E-value, in order 
to gauge relative magnitude of Ĝ(r, q) values in the con-
text of other potential unmeasured confounders, we 
describe Ĝ(r, q) that exceed the reference RRs (pertain-
ing to DIM) as “very strong,” those within the range of 
reference RRs as “moderately strong,” and those less than 
reference RRs as “likely not strong” to unmeasured con-
founding. We apply the same categorizations for assess-
ing the relative magnitude of T̂(r, q) but use reference 
bias factors (pertaining to DIM) in lieu of reference RRs.

The p ̂(q) value, T̂(r, q), and Ĝ(r, q) values were calcu-
lated using the online tool accessible at:  h t t p  s : /  / w w w  . e  v a l  
u e -  c a l c  u l  a t o r . c o m / m e t a / [47]. Results yielding p ̂(q) < 0.15 
or > 0.85 did not have robust parametric confidence 
intervals and are accordingly not reported.

Secondary analyses
Our secondary analysis considered a subset of meta-
analyses in which constituent studies adjust for ≥ 1 other 
CASM to explore the impact of measured confound-
ing by other CASM (e.g., constituent studies exam-
ine the association between tobacco and medication 

non-adherence, adjusting for alcohol use disorder). This 
comprised 26 CASM-adjusted ORs (one association 
yielded no eligible studies and one association yielded 
no CASM-adjusted estimates) and 25 “meta-analysis 
sets” comparing the primary meta-analysis OR and the 
CASM-adjusted-subgroup meta-analysis OR (one asso-
ciation yielded a CASM-adjusted OR without a reference 
unadjusted OR) (Figure S53; Supplementary Box 3). We 
define notable confounding by other CASM as a ≥ 0.20 
change-in-effect between ORs of a given meta-analysis 
set (adjusted value - unadjusted value). We discuss these 
results in more detail in Supplementary Boxes 3 and 4.

Results
Analyses unadjusted for potential unmeasured 
confounding: systematic reviews and meta-analyses
Overall, 89% (24/27) of pooled ORs show strong evidence 
of a positive association with 95% CIs excluding the null, 
and varying levels of heterogeneity (Fig. 3). Pooled ORs 
of associations between CASM and medication non-
adherence range from 1.45 (95% CI 1.17–1.79) to 2.52 
(95% CI 2.07–3.07), with no confidence intervals span-
ning the null. Pooled ORs of associations between CASM 
and unprotected sex range from 1.22 (95% CI 0.80–1.87) 
to 2.08 (95% CI 1.88–2.31), with one of seven confidence 
intervals spanning the null. Pooled ORs for associations 
between CASM and transactional sex range from 1.48 
(95% CI 1.16–1.89) to 3.05 (95% CI 1.75–5.31), with no 
confidence intervals spanning the null (there were no 
eligible studies for pain and transactional sex). Pooled 
ORs for associations between CASM and multiple sexual 
partners range from 0.94 (95% CI 0.66–1.35) to 2.69 (95% 
CI 2.04–3.55), with two of seven confidence intervals 
spanning the null. Alcohol, stimulants, depression, and 
anxiety have greater magnitudes of association with med-
ication non-adherence compared to the other CASM, 
and alcohol and stimulants have greater magnitudes of 
association with unprotected sex compared to the other 
CASM. Alcohol, tobacco, and stimulants have greater 
magnitudes of association with transactional sex and 
multiple sexual partners compared to the other CASM 
(Fig. 3).

Analyses adjusted for potential unmeasured confounding
Point estimate method
Twenty-seven associations were assessed by the E-value, 
among which 81% (22/27) are robust to unmeasured 
confounding by risk propensity, as indicated by E-values 
and/or E-value 95% CI LLs exceeding RRXU and RRUY 
(Tables  2 and 3). The pain and multiple sexual partners 
systematic review yielded a single relevant study for 
which the E-value exceeded RRXU and RRUY. Among the 
non-robust associations, only the opioids and unpro-
tected sex OR has an E-value (rather than the E-value 

https://www.evalue-calculator.com/meta/
https://www.evalue-calculator.com/meta/
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Fig. 3 Meta-analysis pooled estimates of CASM-HIV risky behavior associations
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95% CI LL) exceeded by RRXU and RRUY. E-values range 
from 1.21 (95% CI LL 1.00) to 2.89 (95% CI LL 1.98). 
80% (4/5) of non-robust associations involved associa-
tions with ATOS exposures rather than DAP exposures, 
and all non-robust associations comprise sexual behav-
ior outcomes rather than the medication non-adherence 
outcome. In the context of reference RRs of DIM (Table 
S4; Supplementary Box 5), our E-values appear relatively 
robust (more in the discussion).

Bias factors ranged from 1.01 (smaller amount of bias 
for associations with DAP exposures) to 1.11 and 1.17 
(greater bias for associations with ATOS exposures 
(Table  1). Bias-adjusted RRs suggest the CASM with 
more robust associations are stimulants, depression, 
and anxiety for medication non-adherence, pain, stimu-
lants and depression for unprotected sex, stimulants and 
tobacco for transactional sex, and stimulants, tobacco, 
and pain for multiple sexual partners (Tables 2 and 3).

Table 2 Assessment of unmeasured confounding among meta-analyses assessed by Point Estimate sensitivity analysis only
Exposure Outcome Pooled RR

(95% CI)1
E-value2

(95% CI LL)
Bias factor3 Bias-adjusted RR

(95% CI)
Alcohol Non-adherence 1.40 (1.30–1.50) 2.15 (1.93) 1.11 1.26 (1.17–1.35)
Tobacco Non-adherence 1.28 (1.20–1.38) 1.89 (1.68) 1.11 1.16 (1.08–1.24)
Stimulants Non-adherence 1.59 (1.44–1.75) 2.55 (2.23) 1.11 1.43 (1.29–1.58)
Depression Non-adherence 1.52 (1.35–1.72) 2.42 (2.04) 1.01 1.51 (1.34–1.71)
Anxiety Non-adherence 1.44 (1.24–1.68) 2.24 (1.78) 1.01 1.43 (1.23–1.67)
Pain Non-adherence 1.20 (1.08–1.34) 1.70 (1.38) 1.01 1.20 (1.08–1.33)
Pain Unprotected sex 1.32 (1.08–1.62) 1.97 (1.37) 1.01 1.31 (1.07–1.61)
Alcohol Transactional sex 1.54 (1.4–1.68) 2.44 (2.16) 1.17 1.31 (1.20–1.44)
Stimulants Transactional sex 1.73 (1.58–1.89) 2.85 (2.54) 1.17 1.48 (1.35–1.62)
Depression Transactional sex 1.32 (1.22–1.43) 1.98 (1.74) 1.01 1.31 (1.21–1.42)
Anxiety Transactional sex 1.22 (1.08–1.38) 1.73 (1.37) 1.01 1.21 (1.07–1.37)
Tobacco Multiple sexual partners 1.53 (1.42–1.64) 2.43 (2.20) 1.17 1.31 (1.22–1.40)
Opioids Multiple sexual partners 1.14 (0.93–1.41) 1.55 (1.00) 1.17 0.98 (0.79–1.21)
Anxiety Multiple sexual partners 0.97 (0.81–1.16) 1.21 (1.00) 1.01 0.98 (0.82–1.17)
Pain4 Multiple sexual partners 1.30 (1.10–1.55) 1.93 (1.42) 1.01 1.29 (1.09–1.54)
1 Converted from pooled ORs of Fig. 3
2 E-value: quantifies how strongly an unmeasured confounder would need to be associated with the exposure (minimum risk ratio RRXU) and outcome (minimum risk 
ratio RRUY) to fully explain the observed association (RRXY)
3 Bias factor: quantifies the maximum amount by which an unmeasured confounder could alter RRT

XY
4 Single study

Table 3 Assessment of unmeasured confounding among meta-analyses assessed by Point Estimate and PMSE sensitivity analyses
Exposure Outcome Pooled RR

(95% CI)1
E-value2

(95% CI LL)
Bias factor3 Bias-adjusted RR (95% CI) p̂(q)4 T̂(r, q)5 Ĝ(r, q)6

Opioids Non-adherence 1.28 (1.16–1.42) 1.88 (1.60) 1.11 1.15 (1.05–1.28) 0.702 1.254 1.819
Alcohol Unprotected sex 1.36 (1.26–1.46) 2.05 (1.83) 1.17 1.16 (1.07–1.25) 0.67 1.452 2.263
Tobacco Unprotected sex 1.24 (1.12–1.37) 1.79 (1.48) 1.17 1.06 (0.96–1.17) 0.429 1.469 2.299
Opioids Unprotected sex 1.10 (0.89–1.37) 1.44 (1.00) 1.17 0.94 (0.76–1.17) 0.315 1.315 1.959
Stimulants Unprotected sex 1.44 (1.37–1.52) 2.24 (2.08) 1.17 1.23 (1.17–1.30) 0.786 1.569 2.514
Depression Unprotected sex 1.24 (1.10–1.41) 1.80 (1.44) 1.01 1.23 (1.10–1.40) 0.769 1.279 1.875
Anxiety Unprotected sex 1.19 (1.08–1.32) 1.67 (1.38) 1.01 1.18 (1.07–1.30) 0.688 1.294 1.912
Tobacco Transactional sex 1.75 (1.32–2.3) 2.89 (1.98) 1.17 1.49 (1.13–1.97) 0.791 2.190 3.805
Opioids Transactional sex 1.39 (1.1–1.76) 2.12 (1.43) 1.17 1.18 (0.94–1.51) 0.588 1.691 2.773
Alcohol Multiple sexual partners 1.40 (1.27–1.53) 2.14 (1.86) 1.17 1.19 (1.09–1.31) 0.748 1.415 2.181
Stimulants Multiple sexual partners 1.64 (1.43–1.89) 2.66 (2.21) 1.17 1.40 (1.22–1.61) 0.831 2.062 3.541
Depression Multiple sexual partners 1.18 (1.07–1.31) 1.65 (1.34) 1.01 1.17 (1.06–1.30) 0.628 1.359 2.057
1 Converted from pooled ORs of Fig. 3
2 E-value: quantifies how strongly an unmeasured confounder would need to be associated with the exposure (minimum risk ratio RRXU) and outcome (minimum risk 
ratio RRUY) to fully explain the observed association (RRXY)
3 Bias factor: quantifies the maximum amount by which an unmeasured confounder could alter RRT

XY
4 p̂(q): the proportion of studies in a meta-analysis likely to meet or exceed a user-specified threshold of meaningfully strong effect (q)
5 T̂(r, q): the minimum bias capable of reducing p̂(q) to less than r (analogous to the bias factor)
6 Ĝ(r, q): the minimum values of RRUY and RRXU capable of reducing p̂(q) to less than r (analogous to the E-value)
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Proportion of meaningfully strong effects method
Twelve meta-analyses had sufficient heterogeneity, 
comprised ≥ 10 studies, and were therefore assessed by 
the PMSE method. The strength of evidence for cau-
sation varies from moderate (r ≤ p̂(q) ≤ 0.70) to strong 
(p̂(q) > 0.70)) with p̂(q = 1.10) ranging from 0.315 (for opi-
oids and unprotected sex) to 0.831 (for stimulants and 
multiple sexual partners) (Table  3). That is, 31.5–83.1% 
of individual studies in corresponding meta-analyses 
are likely to yield RRs ≥ 1.10. Of the 12 associations, 50% 
(6/12) have moderate evidence for causation (alcohol, 
anxiety, and tobacco, and opioids for unprotected sex; 
opioids for transactional sex, and depression for multiple 
sexual partners), and 50% (6/12) have strong evidence 
for causation (opioids for medication non-adherence, 
depression, and stimulants for unprotected sex; tobacco 
for transactional sex; stimulants and alcohol for multiple 
sexual partners) (Table 3). All meta-analyses demonstrate 
robustness to bias from unmeasured confounding by risk 
propensity, as all Ĝ(r, q) values exceed their respective 
RRXU and RRUY values, ranging from 1.819 (opioids and 
medication non-adherence) to 3.805 (tobacco and trans-
actional sex) (Table  3). Furthermore, all T̂(r, q) values 
exceed their respective bias factor values, ranging from 
1.254 (opioids and medication non-adherence) to 2.190 
(tobacco and transactional sex). In the context of refer-
ence RRs and bias factors of DIM (Table S4; Supplemen-
tary Box 5; Table S5), our Ĝ(r, q) and T̂(r, q) values are 
relatively robust (more in the discussion).

The true association is not likely to be in the opposite 
direction of the observed association, as analyses altering 
q to RR 0.90 yield very low p ̂(q) values (between 0 and 
0.091) among these meta-analyses, except for tobacco 
and unprotected sex (0.214), opioids and unprotected sex 
(0.447), opioids and transactional sex (0.211).

Secondary analyses
In secondary analyses of CASM-adjusted estimates (Fig-
ure S53; Supplementary Box 3; Tables S2-S3; Supplemen-
tary Box 4), we found that 73% (19/26) of pooled ORs 
show strong evidence of a positive association with 95% 
CIs excluding the null, and varying levels of heteroge-
neity. Among the 25 meta-analyses sets, 84% (21/25) of 
CASM-adjusted meta-analysis estimates have notable 
confounding by other CASM. Most of the notable shifts, 
76% (16/21), occurred towards the null, suggesting posi-
tive confounding by other CASM. ATOS associations are 
more likely to have notable confounding by CASM than 
DAP associations (100% (15/15) versus 60% (6/10)), and 
among those with notable shifts, ATOS associations are 
also more likely to indicate positive confounding by other 
CASM (87% (13/15) versus 50% (3/6)). Among those 
with notable shifts, transactional sex, and multiple sex-
ual partner associations are more likely than medication 

non-adherence and unprotected sex associations to indi-
cate positive confounding by other CASM (100% (9/9) 
versus 57% (4/7) and 60% (3/5), respectively). In regard 
to E-values, 62% (16/26) are robust to unmeasured con-
founding by risk propensity, and 60% (6/10) of non-
robust E-values comprised ATOS associations. E-values 
range from 1.00 (95% CI LL 1.00) to 2.97 (95% CI LL 
2.24) (Tables S2-S3). Only two associations were assessed 
by PMSE, both showing strong evidence of causation 
(p̂(q) > 0.70) and robustness to unmeasured confounding 
by sufficiently large T̂(r, q) Ĝ(r, q) values (Tables S2-S3; 
Supplementary Box 4).

Discussion
Our analyses unadjusted for potential unmeasured con-
founding demonstrate evidence for associations between 
CASM and HIV risk behaviors (Fig.  3), consistent with 
past findings [20–40]. Our findings add to the literature 
by increasing precision and generalizability and sug-
gest that alcohol and stimulants are dominant risk fac-
tors for all investigated HIV risk behaviors. Our analyses 
accounting for potential unmeasured confounding by risk 
propensity indicate that most associations were robust 
to unmeasured confounding. Associations between 
ATOS exposures and HIV risk behaviors are less robust 
to unmeasured confounding than associations between 
DAP exposures and HIV risk behaviors. Bias-adjusted 
RRs reflect varying levels of bias by risk propensity, par-
ticular to exposure or outcome type. While some bias 
factors seem negligible in magnitude (e.g., for DAP and 
medication non-adherence), we present all bias-adjusted 
RRs to identify trends across CASM conditions and HIV 
risk behaviors.

Our sensitivity analyses designed to investigate unmea-
sured confounding in meta-analyses suggest that unmea-
sured confounding by risk propensity is unlikely to 
explain the meta-analyzed associations. Furthermore, no 
meta-analyses showed evidence of a “protective” effect 
(q = 0.90), suggesting it is unlikely that the true direc-
tion of association was negative. Though the Point Esti-
mate method suggests ATOS associations are less robust 
to unmeasured confounding than DAP associations, 
PMSE results suggest all ATOS associations are robust 
to unmeasured confounding. In the PMSE analysis, all 
associations appear strong to unmeasured confound-
ing, with 75% (9/12) of meta-analyzed studies compris-
ing ATOS associations. This apparent “relative leniency” 
of PMSE, compared to the Point Estimate method, that 
deems any residual confounding insufficient to explain 
results is likely explained by its consideration for inter-
study heterogeneous effects that are intrinsic to meta-
analyses. Unlike the derivation of Point Estimate method 
parameters which solely use the central measure of 
association (RRs), the derivation of PMSE parameters 
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include measures of variance and heterogeneity [47]. 
Accordingly, the presence of heterogeneity across our 
meta-analyses (Table S1) suggests more weight should be 
placed on the PMSE results, as they better characterize 
the heterogeneous nature of meta-analyzed data. Fur-
thermore, use of meta-analysis-specific parameters facili-
tate comparison of our data with other literature.

Inferences from the sensitivity analyses hinge to an 
extent on the relative strength of the unmeasured con-
founder. To assess the robustness of our Point Estimate 
method findings, we used DIM as an alternative unmea-
sured confounder [56], comparing our E-values to cor-
responding exposure-covariable RRs (RRXU

ATOS-DIM 
or RRXU

DAP-DIM) and covariable-outcome (RRXU-
DIM-medication non-adherence or RRXU

DIM-risky sexual behavior) 
(Table S4; Supplementary Box 5) [57–60]. DIM appears 
to influence the associations less than risk propensity, as 
all (27/27) E-values appear robust relative to DIM refer-
ence RRs. This suggests that our assessment that 81% of 
associations are robust may be conservative. Some dif-
ferences emerge by outcome. For risky sexual behavior 
outcomes, unlike with risk propensity, we see that ATOS 
associations are generally more robust to DIM confound-
ing than DAP associations. For medication non-adher-
ence, all exposures except for pain are “very strong” and/
or “moderately strong,” and pain is “likely not strong.” 
These differences illustrate the importance of the selec-
tion of the unmeasured confounder proxy used to inter-
pret E-values. We believe risk propensity remains a 
suitable proxy for unmeasured confounding, as it covers 
behavioral factors transcending the medical sector.

The inferences from PMSE also hinge on the relative 
strength of the unmeasured confounder. There is almost 
perfect alignment between the relative assessment of Ĝ(r, 
q) and the relative assessment of E-values (as defined in 
methods) across meta-analyses (both compared to DIM 
E-values, Table S4, Supplementary Box 5). The only dif-
ferences were depression and transactional sex and 
depression and multiple sexual partners (assessment was 
“likely not strong” by E-values and “very strong” by Ĝ(r, 
q) values). There is perfect alignment between the rela-
tive assessment of T̂(r, q) and the relative assessment of 
E-values (compared to DIM bias factors in Table S5 and 
DIM E-values in Table S4, respectively).

Our secondary analysis of CASM-adjusted estimates 
suggests that compared to DAP, ATOS associations are 
more sensitive to measured confounding (by CASM) and 
unmeasured confounding due to a greater prevalence of 
ATOS among meta-analysis sets suggesting notable, pos-
itive confounding. This suggests that ATOS has greater 
clustering with other CASM than DAP. Our results also 
indicate that associations between CASM and medica-
tion non-adherence associations are more sensitive to 
measured confounding (by other CASM factors) than 

associations between CASM and risky sexual behav-
iors are; however, they are less sensitive to unmeasured 
confounding than associations between CASM and 
risky sexual behaviors. This suggests that measures of 
association that adjust for other CASM may sufficiently 
account for residual confounding in CASM-medication 
non-adherence associations. Although the ATOS-DAP 
distinction was not seen by PMSE, this is likely reflec-
tive of its limited scope, as only two meta-analyses were 
included by this method in the secondary analysis. Our 
secondary analysis findings are slightly different when 
considered relative to DIM. First, CASM-adjusted meta-
analyses have a lower prevalence of robust estimates (as 
determined by the E-value) at 73% (19/26), compared to 
100% (27/27) in the primary analysis. While we hypoth-
esized the opposite, that CASM adjustment increases 
robustness to unmeasured confounding, these results 
could indicate that non-CASM confounders influence 
our associations more than CASM confounders. Alter-
natively, or in combination, CASM-adjusted studies may 
account for non-CASM conditions less than studies that 
do not adjust for CASM. Second, we see a higher preva-
lence of robustness to unmeasured confounding relative 
to DIM across secondary analyses (73% (19/26) for DIM 
and 62% (16/26) for risk propensity), supporting previ-
ous findings that risk propensity appears to influence our 
associations more than DIM. Despite these differences, 
CASM-adjusted meta-analyses are still “very strong” to 
unmeasured confounding (Tables S2-S3; Supplementary 
Box 4; Table S4; Supplementary Box 5; Table S5) accord-
ing to Ĝ(r, q) and T̂(r, q) values.

Our analyses were not without limitations. Our sys-
tematic review searches were limited to PubMed and 
English articles. Most constituent studies were cross-
sectional and have potential for reverse causality, mea-
surement error, selection bias, and publication bias [56]. 
Limiting inclusion of studies to those reporting ORs or 
convertible data may have introduced bias by requiring 
a dichotomous outcome but is not likely to affect find-
ings. We did not perform risk of bias qualitative assess-
ments for each meta-analysis, although we did assess the 
impact of CASM adjustment via secondary analysis. We 
had a single reviewer per meta-analysis and do not have 
a kappa test value of internal validity. However, a stan-
dardized data collection document and protocol were 
used. Decision rules used to standardize data collection 
across the meta-analyses have the potential to introduce 
bias compounded by publication bias (e.g., by choosing 
the mode population group or higher exposure strata 
to avoid overrepresentation of a study). Our secondary 
analysis-based interpretations on the presence and direc-
tion of measured confounding by other CASM are non-
definitive, as they imperfectly assess confounding due 
to (1) the mutual inclusivity of CASM-adjusted studies 
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in both primary and secondary analyses, (2) comparing 
studies in lieu of individuals for change-in-effect, and 
(3) a small study count for some secondary meta-anal-
yses. Furthermore, we did not explore the possibility of 
unmeasured negative confounding that may bias results 
towards rather than away from the null effect. In such a 
case, the literature-based input value RRUY would have 
the reverse direction of association with the outcome 
compared to the direction of association between the 
exposure and outcome. For example, if the RR between 
the exposure and outcome is positive, RRUY would be 
negative. In this case, the E-values and PMSE-derived 
parameters would reflect the strength of unmeasured 
negative confounders in skewing effect estimates towards 
the null - that is, the extent to which they underestimate 
the true effect. For our point estimate analyses, associa-
tions with relatively high E-values may still have residual 
unmeasured confounding arising from other sources, 
such as the cross-sectional design of many constituent 
studies [61]. Interpretation of the E-value depends on the 
magnitude of difference between the exposed and unex-
posed groups, but this nuance was not assessed due to 
variation across constituent studies. We used one or two 
studies to estimate alternative RRXU, RRUY, and bias fac-
tors. However, this may be an oversimplification if these 
studies do not align with the specific study populations 
across all constituent studies they were applied to. It may 
be argued that potential unmeasured confounders other 
than risk propensity and DIM could be suitable candi-
dates in this analysis. While our selection was based on 
plausibility, literature, and consideration to avoid collid-
ers, alternative candidates could be applied to our illus-
trative analysis. As with the Point Estimate method, we 
used one or two studies to estimate alternative RRXU, 
RRUY, and bias factors for PMSE which may not cap-
ture the full plausible range of values. Despite its utility 
for quantitative assessment of unmeasured confound-
ing in heterogeneous contexts, p̂(q) benchmark values 
and user-specified thresholds were somewhat arbitrary, 
though guideline- and literature-based to procure results 
compatible with other literature. 95% CIs were not avail-
able for interpretation in PMSE since the variance of τ² 
and the pooled point estimate were not available for each 
meta-analysis. We also only assessed a single threshold 
for a meaningful effect, RR 1.10, which could be a rela-
tively low threshold. Only 42% (11/26) of studies met the 
criteria for PMSE, so this analysis was limited in scope. 
However, we reported E-values for all 27 meta-analyses 
and single studies to provide a uniform parameter for 
comparison. Although some constituent studies adjust 
for various potential confounders, we do not believe they 
adequately consider all unmeasured confounding and 
accordingly do not presume that our bias-adjusted RRs 
over-adjust for confounders.

Conclusion
CASM affect a sizeable portion of PLHIV, with effects 
reverberating from the individual to society. The asso-
ciations between CASM and HIV transmission and pro-
gression risk factors highlight prevention opportunities, 
especially in light of evidence for effective interventions 
that treat CASM among PLHIV [62]. In fact, our mea-
sures of association have been used to inform a model 
examining the potential health benefits of integrated 
screening strategies for CASM conditions among PLHIV, 
using upper bound estimates for residual confounding 
[63]. Our analyses accounting for potential unmeasured 
confounding by risk propensity suggest that alcohol and 
stimulants are dominant risk factors for all investigated 
HIV risk behaviors, highlighting potential high-impact 
targets for integrative intervention strategies to reduce 
HIV morbidity and mortality. Associations with ATOS 
exposures are more sensitive than associations with DAP 
exposures to unmeasured confounding and more likely 
to be positively confounded by other CASM, suggesting 
greater clustering of ATOS conditions with other CASM 
and underscoring the value of targeting alcohol and 
stimulants in integrative intervention strategies. Despite 
evidence of measured and unmeasured confounding, 
we demonstrate that most associations are sufficiently 
strong, with or without adjustment for bias.
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