
Gao et al. BMC Medical Research Methodology           (2025) 25:35  
https://doi.org/10.1186/s12874-025-02488-3

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

BMC Medical Research
Methodology

A doubly robust estimator for continuous 
treatments in high dimensions
Qian Gao1, Jiale Wang1, Ruiling Fang1, Hongwei Sun2 and Tong Wang1* 

Abstract 

Background  Generalized propensity score (GPS) methods have become popular for estimating causal relationships 
between a continuous treatment and an outcome in observational studies with rich covariate information. The pres-
ence of rich covariates enhances the plausibility of the unconfoundedness assumption. Nonetheless, it is also crucial 
to ensure the correct specification of both marginal and conditional treatment distributions, beyond the assumption 
of unconfoundedness.

Method  We address limitations in existing GPS methods by extending balance-based approaches to high dimen-
sions and introducing the Generalized Outcome-Adaptive LASSO and Doubly Robust Estimate (GOALDeR). This novel 
approach integrates a balance-based method that is robust to the misspecification of distributions required for GPS 
methods, a doubly robust estimator that is robust to the misspecification of models, and a variable selection tech-
nique for causal inference that ensures an unbiased and statistically efficient estimation.

Results  Simulation studies showed that GOALDeR was able to generate nearly unbiased estimates when either the 
GPS model or the outcome model was correctly specified. Notably, GOALDeR demonstrated greater precision 
and accuracy compared to existing methods and was slightly affected by the covariate correlation structure and ratio 
of sample size to covariate dimension. Real data analysis revealed no statistically significant dose-response relation-
ship between epigenetic age acceleration and Alzheimer’s disease.

Conclusion  In this study, we proposed GOALDeR as an advanced GPS method for causal inference in high dimen-
sions, and empirically demonstrated that GOALDeR is doubly robust, with improved accuracy and precision com-
pared to existing methods. The R package is available at https://​github.​com/​QianG​ao-​SXMU/​GOALD​eR.
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Introduction
The advent of omics data and health care data makes it 
possible to draw causal conclusions from observational 
studies because a substantial number of covariates makes 

the assumption of unconfoundedness plausible [1]. The 
propensity score (PS) method is a common statistical 
tool for performing such causal inference in observa-
tional studies. The PS method was originally developed 
to estimate the causal effects of a binary treatment, expo-
sure, or intervention (hereafter referred to as ‘treatment’) 
on an outcome [2]. Recently, extensions of PS methods 
to the context of continuous treatment have been devel-
oped and are collectively known as generalized PS (GPS) 
methods. GPS methods are focused on estimating the 
dose–response function (DRF) describing the relation-
ship between a continuous treatment and an outcome 
[3–5]. Similar to PS methods, GPS methods estimate 
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the DRF through regression adjustment [5], matching 
[6], stratification [7], and inverse probability weighting 
(IPW) [8]. Additionally, the doubly robust approach has 
been proposed and has received increasing attention as 
a robust method to model misspecification of either the 
GPS model or the outcome model [9, 10].

GPS is a probability density function of the treatment 
conditional on observed covariates [5]. The validity of GPS 
methods relies on the assumption that both the conditional 
mean and the conditional distribution of the treatment, 
given the covariates, must be correctly specified [8]. To 
relax this assumption, several balancing approaches have 
been proposed under a weighting or doubly robust frame-
work [11–15]. The balancing approaches are focused on 
directly estimating weights under the balance constraints, 
including covariate balance; specifically, the weighted 
cross-moments between the treatment and each covariate 
are 0. Recent methods include the nonparametric covari-
ate balancing generalized propensity score (npCBGPS) 
of Fong et al. [11], entropy balancing weights [12, 13], and 
covariate association eliminating weights of Yiu et al. [14]. 
Whereas these methods are appealing in terms of robust-
ness to GPS model misspecification, the orders of the 
moment of both the covariates and the treatment to decor-
relate must be carefully chosen. A higher moment may be 
helpful when there are nonlinear correlations between the 
treatment and the covariates, but this may violate the posi-
tivity assumption [13, 15]. To our knowledge, there is still a 
lack of guidance for specifying correct orders of moment, 
which is necessary to mitigate confounding bias. To address 
the issue of what moments to decorrelate, Huling et  al. 
proposed distance covariance optimal weights (DCOWs) 
[15]. However, the abovementioned methods do not con-
sider variable selection, which is another important factor 
influencing the performance of the estimated DRF [16–21]; 
therefore, their application is limited in the case of high-
dimensional covariates.

The GPS methods are susceptible to the covariates being 
balanced. For example, the inclusion of instrumental vari-
ables (IVs) that can only predict the treatment in the GPS 
model could inflate variance without reducing bias in the 
estimates [16–21]. It has been well documented that an 
optimal GPS method should balance or control for all con-
founders and prognostic covariates that can only predict 
the outcome [16–21]. Doing so can not only remove con-
founding bias but also improve the efficiency of the esti-
mates [16–21]. Hence, it is necessary to introduce variable 
selection techniques into GPS methods in high-dimensional 
context. In the doubly robust framework, Su et al. [22] and 
Colangelo et  al. [23] used machine learning methods, and 
Antonelli et al. [24] used a Gaussian process to estimate nui-
sance parameters related to the GPS model and the outcome 
model. Unfortunately, these studies failed to address the 

adverse influence of IVs. Under adaptive lasso-based shrink-
age, our previously proposed generalized outcome-adaptive 
LASSO (GOAL) approach discourages the selection of IVs 
by strongly penalizing covariates that are not associated 
with the outcome [25]. The GOAL method is robust to the 
GPS model misspecification. However, its validity depends 
on the assumption that the outcome model is linear.

Here, we retained the idea of variable selection from the 
GOAL method and proposed a generalized outcome-adap-
tive LASSO and doubly robust estimation (GOALDeR) 
method. Unlike the GOAL method, our proposed method 
constructs a penalty function that is independent of the 
outcome model. Consequently, we can estimate the DRF 
in the doubly robust framework [21]. In recognizing that 
the correlation between the treatment and confounders is 
a source of confounding bias [15], our method uses a dis-
tance correlation coefficient as a measure to assess covari-
ate balance. The distance correlation coefficient is zero if 
and only if the variables are independent of each other [26]. 
With a simulation, we show that the GOALDeR method 
is doubly robust, provides more precise and accurate esti-
mates than existing methods, and is scarcely affected by 
the covariate correlation structure and ratio of sample size 
to covariate dimension. We also applied the GOALDeR 
method to investigate potential causality between epige-
netic age acceleration and Alzheimer’s disease (AD).

Generalized outcome‑adaptive LASSO and doubly 
robust estimation
Notations and assumptions
We let Dn

i=1
= (Ti,Yi,Zi) denotes an independent and 

identically distributed sample drawn from a common 
joint distribution f (T ,Y ,Z) . Each subject i ∈ {1, ..., n} has 
a continuous treatment Ti whose support is T ⊆ R , and 
an outcome Yi . We characterize causal DRF using poten-
tial outcome notation [27] and define Yi(t) as the poten-
tial outcome for subject i ∈ {1, ..., n} given treatment 
level Ti = t ( t ∈ T  ). Our target estimand is E(Yi(t)) . 
The observed Zi ∈ Rp denotes pre-treatment covari-
ates, where p is the dimension. Each available covariate 
belongs to one of four mutually exclusive covariate sets:

confounders ( Zc ): covariates that contribute to both 
the treatment and the outcome;
prognostic covariates ( ZP ): covariates that contribute 
to the outcome only;
instrumental variables ( ZI ): covariates that contribute 
to the treatment only;
spurious covariates ( ZS ): covariates that contribu-
tions to neither the treatment nor the outcome.

Under the potential outcome framework, we estab-
lished the following assumptions to identify the DRF from 
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the observed data, and we maintained these assumptions 
throughout this work.

Assumption 1 (Consistency): For subject i ∈ {1, · · · , n} , 
Ti = (t ∈ T ) implies Yi = Yi(t).

Assumption 2 (Positivity): The GPS or condi-
tional probability density function of the treat-
ment  fT|Z(Ti = t|Zi)  is positive for any  t ∈ T   and for 
any Zi ∈ Rp.

Assumption 3 (Unconfoundedness): Yi(t) ⊥ Ti|
|Zi,∀ t ∈ T   means that for any treatment level, the 
potential outcome  Yi(t)  is conditionally independent 
of the treatment given the covariates. Note that this 
assumption is untestable from the observed data.

Assumption 4 (Stable unit treatment assumption): 
This assumption indicates that there is no interference 
among subjects.

Variable selection based on outcome‑adaptive LASSO
We retained the idea of variable selection from the 
GOAL method [25] and started by assuming the GPS 
model as follows:

As mentioned in the introduction, an optimal GPS 
method should control for or balance covariates that are 
associated with the outcome (including Zc and ZP ). The 
covariate selection mechanism should be free from the 
outcome model for a doubly robust estimator. We bor-
rowed the idea from the adaptive LASSO and achieved a 
covariate selection procedure by solving:

where ŵj denotes penalty weight and is inversely propor-
tional to the influence of covariates Zj on the outcome. 
Here, the GOALDeR method defines an outcome model-
free penalty weight as ŵj =

∣∣∣∣
∣∣dcor

(
Zj ,Y |T

)∣∣/max
j

∣∣dcor
(
Zj ,Y |T

)∣∣
∣∣∣∣
γ

 , 
where dcor

(
Zj ,Y |T

)
 is the conditional distance correlation 

coefficient between Zj and the outcome Y  , given treatment 
T  , measuring any kind of correlations [28]. γ > 1 is a tun-
ing parameter. � n > 0 is another tuning parameter satisfy-
ing � n/

√
n → 0 and � nn

γ /2−1 → ∞ for consistency in 
variable selection, as with the GOAL method [25, 29]. On 
the contrary, the GOAL method utilizes coefficients from a 
separate linear outcome model to create penalty weights, 
which means that the validity of the GOAL method 
depends on the correct specification of the outcome model.

(1)E(T |Z) = α 0 +
∑

p
j=1

Zjα j

(2)
α̂ = arg min

α
||T − α 0 −

∑
p
j=1

Zjα j�
2

2
+ � n

∑
p
j=1

ŵj

∣∣α j

∣∣

Choosing �n 
We propose dual-weight distance correlation (DWDC) 
as a measure for selecting the optimal � n , and the rule 
is minimizing DWDC. Similar to dual-weight correlation 
(DWC) in the GOAL method, the standpoint of DWDC 
is covariate balance for unbiased, efficient estimation. 
However, unlike DWC which only captures linear cor-
relations between covariates and both the treatment and 
the outcome, DWDC uses distance correlation to capture 
all types of correlations between covariates and both the 
treatment and the outcome.

where dcorw� n

(
Zj ,T

)
 refers to the weighted distance 

correlation between covariate Zj and the treatment, 
serving as a measure of covariate balance. The smaller 
the 

∣∣dcorw� n

(
Zj ,T

)∣∣ , the better the covariate balance 
achieved after weighting. Recall that dcor

(
Zj ,Y |T

)
 is the 

conditional distance correlation between Zj and Y  given 
T. Multiplying these two components implies that the 
DWDC is more affected by the imbalance of Zc and ZP 
and less affected by the imbalance of ZI and ZS . Hence, a 
smaller DWDC could further encourage the selection of 
Zc and ZP.

The balance weights w� n in the DWDC are estimated 
using the DCOWs method with covariates selected 
according to Eq. (2) with � n , without requiring the speci-
fication of moment orders for both the covariates and the 
treatment to achieve decorrelation. The DCOWs method 
uses weighted distance covariance between the treatment 

and covariates as a loss function and directly estimates 
balance weights under the following constraints: (1) the 
marginal distributions of the treatment and the covari-
ates are preserved after weighting; (2) the weights are 
positive and sum to the sample size. The authors showed 
that the balance weights estimated by the DCOWs could 
enhance a doubly robust estimator. Further details are 
provided in the article by Huling et al. [15]. On the con-
trary, the balance weights w� n in the DWC are estimated 
using npCBGPS [11], which requires the specification of 
moment orders for both the covariates and the treatment 
to achieve decorrelation of nonlinearities.

Estimating DRF using a doubly robust estimator
Based on balance weights estimated using covariates 
selected by optimal � n , the GOAL method uses the IPW 

(3)
DWDC = p

j=1
dcor Zj ,Y |T 2

dcorw� n Zj ,T
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method to estimate DRF. The GOAL method cannot esti-
mate DRF using the “doubly robust” method as variable 
selection in the GPS model hinges on the outcome model 
being correct, which undermines the “doubly robust” 
nature of the method [21]. In contrast, the variable selec-
tion in GOALDeR is independent of the outcome model; 
therefore, we ultimately use the doubly robust estimator 
of Kennedy et al. [10] to estimate DRF. The doubly robust 
estimator of Kennedy et al. [10] consists of two steps. In 
the first step, a pseudo-outcome is constructed, and in 
the second step, the pseudo-outcome is regressed on the 
treatment to estimate DRF. The pseudo-outcome can be 
estimated as [15]:

where µ̂ (Z,T ) denotes an estimate of the outcome 
model µ (Z,T ) . Here, the Super Learner method (SL) 
which combines LASSO, XGBoost, Random Forest, 
and Support vector machines is applied to estimate 
µ̂ (• ) [30]. wi denotes balance weights estimated by the 
DCOWs method with covariates selected by optimal � n . 
Subsequently, the DRF is estimated using a linear or non-
linear regression model of the treatment on the pseudo-
outcome. In this work, we used a linear regression model 
for comparison purposes.

Simulations
Simulation setup
We modeled simulations to assess the performance of 
GOALDeR and compare it with existing approaches 
when there are a large number of covariates. Following 
our previous studies [25, 31], we developed simulations 

(4)

θ̂ (Ti) =
1

n

∑
n
i=1µ̂

(
−
Z, Ti

)
+

(
Yi − µ̂ (Zi,Ti)

)
wi

by adapting the research conducted by Tan et al. [32] and 
Shortreed et al. [29]. For each replicated dataset, p covar-
iates and n individuals were drawn independently from a 
multivariate standard Gaussian distribution with varying 
correlations of 0, 0.2, and 0.5. We generated a continuous 
treatment and outcome from models given by:

where η = 0 or 2.
We used two data-generating scenarios to compare the 

GOALDeR method with existing methods, which were 
summarized in Table 1. In the first scenario, we assumed 
that both the GPS model and the outcome model are lin-
ear, that is, g

(
Zj

)
= Zj and m

(
Zj

)
= Zj , j = 1, . . . p , and 

we conducted simulations in three settings by varying 
the strength of the relationship between confounders and 
outcome, and treatment. We considered varying levels 
of confounding because the strength of the confound-
ers affects the bias, variance, and mean-squared error 
(MSE) of an estimate [19]. For all three settings, the first 
two covariates, Z1 and Z2 , are true confounders; the third 
and fourth covariates, Z3 and Z4 , are prognostic covari-
ates; the fifth and sixth covariates, Z5 and Z6 , are IVs; 
and the other p-6 covariates are spurious covariates. The 
first setting (SoSt) sets α = (1,1, 0,0, 1,1, 0, . . . . . . , 0) 
and β = (1,1, 1,1, 0,0, 0, . . . . . . , 0) . The second set-
ting (SoWt) sets α = (0.5,0.5,0, 0,1, 1,0, . . . . . . , 0) 
and β = (1,1, 1,1, 0,0, 0, . . . . . . , 0) . The third set-
ting (WoSt) sets α = (1,1, 0,0, 1,1, 0, . . . . . . , 0) and 
β = (0.5,0.5,1, 1,0, 0,0, . . . . . . , 0) . The coefficients of 1 

(5)
GPS model : T =

∑
p

j=1
m
(
Zj

)
α j + ζ , ζ ∼ N (0,1)

(6)
Outcome model : Y = η T +

∑
p

j=1g
(
Zj

)
β j + ξ , ξ ∼ N (0,1)

Table 1  Simulation scenarios. Treatment T is generated as N(m(Z), 1) , and outcome Y is generated as N(η T + g(Z), 1) where η = 0 or 2

Scenarios Covariates (Z) (n, p) Settings m(Z) (treatment) g(Z) (outcome)

1 Zp ∼ N
(
0p,�

)

� ij = 1 (i = j)
� ij = ρ (i �= j)
ρ = 0, 0.2, 0.5

(200,100)
(500,200)

SoSt Z1 + Z2 + Z5 + Z6 Z1 + Z2 + Z3 + Z4

SoWt 0.5 ∗ Z1 + 0.5 ∗ Z2 + Z5 + Z6 Z1 + Z2 + Z3 + Z4

WoSt Z1 + Z2 + Z5 + Z6 0.5 ∗ Z1 + 0.5 ∗ Z2 + Z3 + Z4

2 Zp ∼ N
(
0p,�

)

� ij = 1 (i = j)
� ij = ρ (i �= j)
ρ = 0, 0.2.0.5

(200,100)
(500,200)

CoMt [exp(Z1/2)]
+[(Z2/(1+ exp(Z1)))+ 10]
+[(0.04 ∗ Z1 ∗ Z3 + 0.6)3]
+[(Z2 + Z4)

2] + Z7 + Z8

Z1 + Z2 + Z3 + Z4 + Z5 + Z6

MoCt Z1 + Z2 + Z3 + Z4 + Z7 + Z8 [exp(Z1/2)]
+[(Z2/(1+ exp(Z1)))+ 10]
+[(0.04 ∗ Z1 ∗ Z3 + 0.6)3]
+[(Z2 + Z4)

2] + Z5 + Z6

MoMt [exp(Z1/2)]
+[(Z2/(1+ exp(Z1)))+ 10]
+[(0.04 ∗ Z1 ∗ Z3 + 0.6)3]
+[(Z2 + Z4)

2] + Z7 + Z8

[exp(Z1/2)]
+[(Z2/(1+ exp(Z1)))+ 10]
+[(0.04 ∗ Z1 ∗ Z3 + 0.6)3]
+[(Z2 + Z4)

2] + Z5 + Z6
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and 0.5 for confounders are commonly used in epidemiol-
ogy [31, 33–35].

Under the second scenario, we introduced model mis-
specification via a nonlinear transformation of confound-
ers and conducted simulations under three settings 
by varying whether the GPS model or the outcome 
model was misspecified. The data-generating processes 
were similar to those in the simulations by Tan et  al. 
[32] and Kang et  al. [36], which explored the impact of 
model misspecification on DR and non-DR estima-
tors. The first setting correctly specified the outcome 
model, and misspecified the GPS model (CoMt) given 
m(Z1) = exp(Z1/2) , m(Z2) = (Z2/(1+ exp(Z1)))+ 10 , 
m(Z3) = (0.04 ∗ Z1 ∗ Z3 + 0.6)3 , m(Z4) = (Z2 + Z4)

2 , 
m
(
Zj

)
= Zj for j > 4 , and g

(
Zj

)
= Zj for j = 1, . . . p . 

The second setting (MoCt) used a nonlinear data-
generating process for the outcome, and linear for 
the treatment given m

(
Zj

)
= Zj for j = 1, . . . p , and 

g(Z1) = exp(Z1/2) , g(Z2) = (Z2/(1+ exp(Z1)))+ 10 , 
g(Z3) = (0.04 ∗ Z1 ∗ Z3 + 0.6)3 , g(Z4) = (Z2 + Z4)

2 , 
g
(
Zj

)
= Zj for j > 4 . The third setting (MoMt) 

used a nonlinear data-generating process for 
both the outcome and treatment, as with CoMt 
and MoCt. For all three settings, the coefficients 
were set to α = (1,1, 1,1, 0,0, 1,1, 0, . . . . . . , 0) and 
β = (1,1, 1,1, 1,1, 0,0, 0, . . . . . . , 0).

For other settings, including the true causal parameter in 
the DRF ( η = 0 or 2), sample size, and the dimension of 
covariates, we followed Shortreed et al. [29] and our previ-
ous study [25]. For each setting, we generated 100 simulated 
datasets each for dimensionality (n/p ratio): n = 200, p = 100 
and n = 500, p = 200. We searched over several possible � n 
values 

{
n
−10, n−5, n−2, n−1.25, n−1, n

−0.75
, n−0.5, n−0.25, n0.25, n0.49

}
 for 

each dataset and chose γ such that � nn
γ /2−1 = n2.

Furthermore, to investigate the impact of effect size 
on statistical testing, we also explored the performance 
of each method when the DRF parameter was set to 0.4 
and 0.7. The data-generating processes are the same as 
those described in Table 1, with the only difference being 
η = 0.4 or 0.7. To examine the performance of the GOAL-
DeR method as the sample size increases, we let p = 20 
and n = 200, 500, 1000. The data-generating processes are 
the same as those described in Table 1, with the only dif-
ference being the values of (n, p).

Comparing methods
 We compared the following methods for estimating 
DRF: (1) GOAL [25], whose processes are similar to 
those of the GOALDeR method. The main differences 
between the GOAL method and the GOALDeR method 
are described in Sect.  2. A detailed implementation of 
the GOAL method can be found in the Supplementary 
Materials; (2) SL-DR, which estimates the DRF in the DR 

framework of Kennedy et  al. [10] (described in subsec-
tion 2.4). Briefly, the SL-DR method fits the GPS model 
and the outcome model using the SL method to esti-
mate the pseudo-outcome. The SL method combines the 
results of LASSO, XGBoost, Random Forest, and Support 
vector machines. The balance weights used to estimate 
the pseudo-outcome are given by wi = fT (Ti)/fT |Z(Ti|Zi) 
where the numerator is the marginal density of the treat-
ment, and fT |Z(Ti|Zi) is the GPS. In this study, we nor-
mally approximated both fT (Ti) and fT |Z(Ti|Zi) . The 
R packages used to implement the GOALDeR, SL-DR, 
and GOAL methods are available at https://​github.​com/​
QianG​ao-​SXMU/​GOALD​eR and https://​github.​com/​
QianG​ao-​SXMU/​GOAL, respectively.

Results
The results of data-generating with η = 2 are shown fol-
lowing. The others are in the Supplementary Materials.

Estimation under scenarios 1 and 2 with a modest p = 20
We performed simulations to evaluate GOALDeR 
and compare it with existing methods. For illustrat-
ing the performance of GOALDeR as the sample size 
(n) increases, we plotted the distribution of the causal 
parameter estimates using a boxplot and the propor-
tion of times each covariate was selected for simulation 
with a modest number of covariates (p = 20). For Sce-
nario 1, where both the outcome and GPS models are 
linear, we present the results for SoSt (the confounders 
are strongly correlated with both the treatment and the 
outcome), with a true causal parameter equal to 2. The 
remaining results are provided in the Supplementary 
Materials. The boxplot of causal parameter estimates 
is presented in Fig.  1 (Supplementary Figs. S1 and S8). 
GOALDeR produced nearly unbiased estimates across 
all sample sizes, and the precision of the estimates was 
enhanced as n increased. In Scenario 2, when either the 
GPS model or outcome model was nonlinear (CoMt and 
MoCt), GOALDeR could still yield nearly unbiased esti-
mates across all sample sizes (Fig. 2 and Supplementary 
Fig. S12) despite having unsatisfactory performance in 
variable selection (Supplementary Figs. S5 to S7 and S13 
to S15). Under the setting where the outcome model is 
nonlinear and the GPS model is linear (MoCt), the vari-
ability of the estimates became smaller as the sample size 
increased. Not surprisingly, the estimates became biased 
when both the GPS and outcome models were nonlinear 
(MoMt; Fig. 2 and Supplementary Fig. S12).

The percentage of each covariate being selected under 
Scenario 1 is shown in Fig.  3 (Supplementary Figs. S2 
to S4 and S9 to S11). We present the results for SoSt, 
with a true causal parameter equal to 2. The remaining 
results are presented in the Supplementary Materials. In 

https://github.com/QianGao-SXMU/GOALDeR
https://github.com/QianGao-SXMU/GOALDeR
https://github.com/QianGao-SXMU/GOAL
https://github.com/QianGao-SXMU/GOAL
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general, the likelihood of selecting IVs decreased sharply 
with n increased. To illustrate no correlation between 
covariates, the average proportion of selecting IVs was 
30% when n = 200, decreasing to 1.5% when n = 500, and 
further decreasing to 0 when n = 1000. The selection of 
IVs and spurious covariates increased as the correlation 
between covariates increased. Although GOALDeR may 
underselect confounders that are weakly correlated with 
outcome (Supplementary Figs. S4 and S11), it still yielded 
nearly unbiased estimates (Supplementary Figs. S1 and 
S8). Additionally, the GOALDeR showed a similar vari-
able selection pattern when there was a large number of 
covariates.

Estimation and testing under scenario 1 with a large 
number of covariates
In Scenario 1, we compared the accuracy and preci-
sion of causal estimates between GOALDeR, GOAL, 
and SL-DR under varying strengths between confound-
ers and both the treatment and outcome. The bias of 
parameter estimates in the DRF was used to evalu-
ate accuracy. The bias distribution is shown in Fig.  4, 
and the summary statistics for Scenario 1 are listed 
in Table  2. GOALDeR showed nearly unbiased esti-
mates across all three settings (Fig. 4; Table 2). The root 
mean squared error (RMSE) and the empirical stand-
ard error of the estimates were used to assess preci-
sion. The precision of GOALDeR was slightly enhanced 
when n = 500 compared to when n = 200. Interestingly, 
the accuracy and precision of GOALDeR were slightly 
impacted by the correlations between covariates (Fig. 4; 
Table  2). In contrast, as previously observed, the bias 
and variability (RMSE and empirical standard error) of 

GOAL increased as the correlations between covariates 
increased and the n/p ratio decreased. Compared with 
GOALDeR, SL-DR provided similar estimation accu-
racy, but the precision was significantly worse than that 
of GOALDeR (Fig.  4; Table  2). The reason is presum-
ably owing to ignoring the negative effects of IVs when 
fitting the GPS model.

The standard deviation (SD) was estimated using the 
regression of the treatment on pseudo-outcome for the 
GOALDeR and SL-DR methods, and the sandwich-
type variance estimator for the GOAL method [25]. 
The coverage probability of the 95% confidence interval 
(CI) and power were used to assess statistical testing. 
As shown in Table 2, for GOALDeR, the estimated SDs 
were lower than the empirical standard errors in most 
cases, resulting in the coverage of the 95% CI being less 
than 95% (ranging from 67 to 90%). For SL-DR, the esti-
mated SDs were significantly lower than the empirical 
standard errors, and the coverage of the 95% CI (rang-
ing from 48 to 81%) was consistently lower than that of 
the GOALDeR method. This implied that the estimated 
SDs for GOALDeR and SL-DR methods were underes-
timated. For GOAL, the estimated SDs were larger than 
the empirical standard errors, resulting in the coverage 
of the 95% CI tending to be conservative (ranging from 
95 to 100%). We also estimated the SD using the boot-
strap method for the GOALDeR method and found that 
the bootstrap SD was slightly higher than the empirical 
standard errors, and the corresponding coverage was 
around 95% in most cases.

GOALDeR, GOAL, and SL-DR had similar power, 
which was 1 in all three settings (Table 2). Furthermore, 
we also explored the performance of each method when 

Fig. 1  Illustrations with a modest p = 20. Boxplot of parameters for the dose–response function (DRF) under the setting where confounders 
are strongly correlated with both the treatment and outcome (SoSt) and η = 2. The true causal parameter of 2 is indicated by a dotted line, 
and the asterisks represent outliers
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the DRF parameter was set to 0.4 and 0.7 to investi-
gate the impact of effect size on statistical testing. The 
results for η = 0.4 and 0.7 are presented in Supple-
mentary Tables S3 and S4, which were similar to those 
for η = 2 except for the power. When the DRF param-
eter decreased from 2 to 0.4, the power for GOALDeR 
remained consistently at 1, while it slightly decreased 

for SL-DR and significantly decreased for the GOAL 
method.

Estimation and testing under scenario 2 with a large 
number of covariates
In Scenario 2, we assessed the double robustness of 
GOALDeR, GOAL, and SL-DR. The bias distribution of 
parameter estimates in DRF is shown in Fig.  5, and the 

Fig. 2  Illustrations with a modest p = 20. Boxplot of parameters for the dose–response function (DRF) under Scenario 2 with η = 2. The true causal 
parameter of 2 is indicated by a red dotted line, and the asterisks represent outliers. The black dashed lines at 1.9 and 2.1 are primarily intended 
to aid in evaluation
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summary statistics for Scenario 2 are listed in Table  3. 
GOALDeR yielded estimates that were close to the 
true value 2 as long as one of the outcome and the GPS 
models were correctly specified, and the biases were 
less impacted by the correlation between covariates and 
the n/p ratio. This indicated the double robustness of 
GOALDeR (Table 3; Fig. 5). In the setting of MoCt, the 

variability (RMSE and empirical standard error) of the 
estimates by GOALDeR became large as the correla-
tion between covariates increased, especially when the 
n/p ratio was small (n/p = 200/100). The SL-DR method 
also tended to be doubly robust. Compared to GOAL-
DeR, SL-DR provided estimates with smaller biases and 
slightly higher RMSE in the MoCt setting. However, 

Fig. 3  Illustrations with a modest p = 20. The probability of covariate selection being balanced over 100 simulations under the setting 
where the confounders were strongly correlated with both the treatment and the outcome (SoSt) and η = 2

Fig. 4  Boxplot of the bias for causal parameters in the dose–response function (DRF) by our method and GOAL, SL-DR under Scenario 1 with η = 2. 
The zero reference line is indicated by a dotted line, and the asterisks represent outliers
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when only the GPS model was non-linear (CoMt), its 
biases and RMSE were significantly larger than those 
of the GOALDeR method, especially when there was a 
strong correlation among covariates. In contrast, GOAL 
became biased when the outcome model was incorrectly 
specified because it relies on the assumption that the out-
come model is linear for variable selection. In the MoMt 
setting, all three approaches were biased, with SL-DR 
exhibiting the largest biases and RMSE.

As shown in Table 3, when one of the models was cor-
rectly specified (CoMt and MoCt), the estimated SDs 
of GOALDeR were less than or equal to the empirical 
standard errors, resulting in the coverage being less than 
95% in most cases. The bootstrap SDs were higher than 
the empirical standard errors, and the corresponding 
coverage tended to be conservative (ranging from 93 to 
100%). For the SL-DR method, the estimated SDs were 
significantly less than the empirical standard errors, and 

Fig. 5  Boxplot of the bias for the causal parameters in the dose–response function (DRF) using our method and GOAL, and SL-DR under Scenario 2 
with η = 2. The zero reference line is indicated by a dotted line, and the asterisks represent outliers
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the coverage of the 95% CI (ranging from 0 to 77%) was 
consistently lower than that of the GOALDeR method. 
For the GOAL method, the estimated SDs were nearly 
equal to the empirical standard errors in the setting of 
CoMt, and the corresponding coverage was less than 
95%. In the setting of MoCt, the estimated SDs of GOAL 
were significantly larger than the empirical standard 
errors, and the coverage was conservative. In the set-
ting of MoMt, the coverage of all three methods was 0 
because of the large bias.

The power of GOALDeR and SL-DR was always 1 in all 
three settings (Table 3). In contrast, the power of GOAL 
was significantly reduced when only the outcome model 
was incorrectly specified (MoCt). When the DRF param-
eter decreased from 2 to 0.4, the power for GOALDeR 
remained consistently at 1, while it slightly decreased 
for SL-DR. The coverage for the GOALDeR and SL-DR 
methods decreased.

Real data applications
We applied GOALDeR and SL-DR to study causal rela-
tionships between epigenetic age acceleration and AD. 
The results of the GOAL method have been reported 
in our previous study [25]. We followed steps similar to 
those implemented in the GOAL method to collect data-
sets, calculate DNA methylation (DNAm) age, and pro-
cess and identify potential confounders [25]. Briefly, we 
downloaded seven datasets from the Gene Expression 
Omnibus database according to the inclusion and exclu-
sion criteria. The accession numbers are GSE105109 
[37], GSE125895 [38], GSE134379 [39], GSE59685 [40], 
GSE66351 [41], GSE80970 [42], and GSE109627 [43], 
covering four brain regions: frontal cortex (FC), tempo-
ral cortex (TC), entorhinal cortex (ERC), and cerebellum 
(CRB). The ‘cortical DNAm clock’ was used to estimate 
DNAm age, which is a measure of biological age [44]. 
The residuals of the regression model of chronological 
age on DNAm age were defined as epigenetic age accel-
eration. We considered chronological age and gender to 
be recognized risk factors for AD, and the datasets with 
raw data also controlled for the proportion of neuronal 
cells. Additionally, we regarded whole-genome CpG sites 
as potential covariates, as they may contain confounders 
and prognostic covariates or act as surrogates for these 
two types of covariates. Initially, we selected potential 
adjustment CpG sites through epigenome-wide associa-
tion study (EWAS) meta-analysis for each brain region, 
keeping the top K CpG sites with the smallest Bonferroni-
adjusted P values. The value of K for each brain region was 
determined as follows: K = minimum sample size in the 
specific brain region − (number of known covariates + 2), 
since GOALDeR is not directly applicable when p > n.

Table  4 shows the estimated causal DRF of the 
GOALDeR and SL-DR methods between epigenetic 
age acceleration and AD across four brain regions. 
For the GOALDeR method, the four brain regions 
showed consistent results that there was no statisti-
cally significant dose–response relationship between 
epigenetic age acceleration and AD (P > 0.05). For the 
SL-DR method, the results for the four regions were 
inconsistent. We therefore performed a meta-analy-
sis with a random-effects model (Supplementary Fig. 
S18) because there was heterogeneity among data-
sets (TC: I2 = 96.4%, Q = 111.76, P < 0.0001 ; FC: 
I2 =94.5%, Q = 54.63, P < 0.0001 ; ERC: I2 =92.8% 
, Q = 27.64, P < 0.0001 ; CRB: I2 =90.3%, Q = 30.95,

P < 0.0001 ). The pooled odds ratios were 0.9985 (95% 
confidence interval: 0.9943–1.0027, P = 0.4883), 1.0006 
(95% confidence interval: 0.9945–1.0067, P = 0.8550), 
0.9643 (95% confidence interval: 0.8860–1.0496, P = 0.4008), 
and 0.9885 (95% confidence interval: 0.9510–1.0276, 
P = 0.5601), respectively.

In summary, the GOALDeR and SL-DR analyses found 
that there was no statistically significant dose-response 
association between epigenetic age acceleration and AD, 
which is consistent with the results of the GOAL method 
[25]. In addition, the results of the SL-DR method showed 
greater variability than those of GOALDeR, which is con-
sistent with our simulation results.

Discussion
We developed a new approach, GOALDeR, to estimate 
the linear or nonlinear DRF in high dimensions. Our 
extensive simulation studies, conducted under both cor-
rect and incorrect model specifications, indicated that 
GOALDeR can produce nearly unbiased estimates as 
long as either the outcome or GPS model is correctly 
specified. Therefore, it shows doubly robust empirically. 
The performance of GOALDeR is less impacted by the 
n/p ratio and correlated covariates. GOALDeR can also 
achieve statistical power and 95%CI coverage that are 
comparable to those of other methods.

Our simulations show that GOAL requires a linear 
outcome model to produce unbiased estimates, but the 
accuracy and precision worsen when there are correlated 
covariates or the n/p ratio is small. These results are con-
sistent with those of previous studies [25]. The SL-DR 
requires the user to specify the conditional and marginal 
distributions of the treatment [22–24]. In our simula-
tions, we assumed normal distributions for the treatment 
and the GPS both in the data-generating process and in 
the estimation of balance weights for SL-DR. This setting 
may partly contribute to the nearly doubly robust perfor-
mance of SL-DR and explain why SL-DR performs less 
accurately and precisely than GOALDeR when the GPS 
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model is misspecified and the outcome model is cor-
rectly specified. Additionally, the variability of estimates 
for SL-DR is greater than that of GOALDeR. This may 
be because SL-DR ignores the influence of IVs when esti-
mating the GPS [16–21].

The outstanding performance of GOALDeR in estima-
tion accuracy and precision may be attributed to the fol-
lowing: (1) GOALDeR uses a balance-based method to 
estimate balance weights, thereby avoiding the need to 
specify distributions for the treatment and GPS [15]; (2) 
GOALDeR uses a distance correlation coefficient as the 
measure to assess covariate balance, thereby avoiding the 
need to specify the orders of moment of both the covari-
ates and the treatment to decorrelate [15]; (3) GOALDeR 
constructs penalty weights based on conditional cor-
relation between the outcome and covariates without 
depending on the outcome model, thereby achieving 
exclusion IVs and estimation DRF in the doubly robust 
framework [21]. However, as with most existing methods 
[16, 21, 22, 25, 29], GOALDeR lacks a standard devia-
tion estimator to guarantee a valid confidence interval. 
Here, GOALDeR uses the regression coefficient of the 
treatment on pseudo-outcome to obtain an inference of 
DRF. The corresponding power consistently equaled 1, 
while the coverage of the 95% CI was often less than the 
nominal value, suggesting that the SDs were underesti-
mated. This underestimation may be due to the estimated 
SD failing to adequately capture the variability of vari-
able selection. We also employed the bootstrap method 
to estimate the SD and found that (i) the bootstrap SDs 
were slightly higher than the empirical standard errors 
when both the GPS and outcome models were correctly 
specified, resulting in coverage probabilities around the 
nominal value in most cases; (ii) the bootstrap SDs were 
moderately higher than the empirical standard errors 
when either the GPS or the outcome model was correctly 
specified, leading to coverage probabilities that tended to 
be conservative (greater than the nominal value) in most 
cases. Although the bootstrap method tends to improve 
the statistical tests, it does not completely resolve the 
inference problem after variable selection [45]. Therefore, 
further research on the development of a valid and widely 
applicable variance estimator after variable selection is a 
possible topic in future work [46].

In summary, this study proposed a doubly robust esti-
mator for continuous treatment and high-dimensional 
covariates. Within the framework of the doubly robust 
(DR) estimator, the proposed GOALDeR method com-
bined a variable selection technique for causal inference 
to ensure unbiased and statistically efficient estimation, 
along with a balance-based method that was robust to 
misspecification of the distributions required for GPS 
methods. Simulation results and real data analyses 

provided empirical evidence that GOALDeR achieved 
double robustness, offering improved accuracy and pre-
cision compared to existing methods. We also provided 
an R package for implementing the GOALDeR method, 
available at https://​github.​com/​QianG​ao-​SXMU/​GOALD​
eR.
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