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Abstract 

Multimorbidity is characterized by the accrual of two or more long-term conditions (LTCs) in an individual. This state 
of health is increasingly prevalent and poses public health challenges. Adapting approaches to effectively analyse 
electronic health records is needed to better understand multimorbidity. We propose a novel unsupervised clus-
tering approach to multiple time-to-event health records denoted as multiple state clustering analysis (MSCA). In 
MSCA, patients’ pairwise dissimilarities are computed using patients’ state matrices which are composed of multiple 
censored time-to-event indicators reflecting patients’ health history. The use of state matrices enables the analy-
sis of an arbitrary number of LTCs without reducing patients’ health trajectories to a particular sequence of events. 
MSCA was applied to analyse multimorbidity associated with myocardial infarction using electronic health records 
of 26 LTCs, including conventional cardiovascular risk factors (CVRFs) such as diabetes and hypertension, collected 
from south London general practices between 2005 and 2021 in 5087 patients using the MSCA R library. We identi-
fied a typology of 11 clusters, characterised by age at onset of myocardial infarction, sequences of conventional 
CVRFs and non-conventional risk factors including physical and mental health conditions. Interestingly, multivariate 
analysis revealed that clusters were also associated with various combinations of socio-demographic characteristics 
including gender and ethnicity. By identifying meaningful sequences of LTCs associated with myocardial infarction 
and distinct socio-demographic characteristics, MSCA proves to be an effective approach to the analysis of elec-
tronic health records, with the potential to enhance our understanding of multimorbidity for improved prevention 
and management.
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Background
The notion that life-course health trajectories are influ-
enced by early life events and the ever-changing histori-
cal context [1], or by later lifestyle associated exposure [2] 
have dominated the epidemiological field so far.

Accordingly, life-course epidemiology has developed the 
environmental model-based approach to chronic diseases, 
focusing on lifestyles and previous exposures that may 
explain future health conditions. Conceptual life-course 
models include, for instance, the critical period model [3], 
the accumulation risk model [4] or the chain risk model 
[5]. These models emphasize various aspects of life expe-
riences such as the impact of early-life exposures on later 
health outcomes, the cumulative effects of multiple risk 
factors and exposure over time, and the interdependence 
of health events respectively. Conversely, we can assume 
that the main combinations of early life events and specific 
socio-demographic contexts result in distinct patterns of 
life-course health trajectories characterised by specific pat-
terns of long-term conditions (LTCs).

Progress in information technologies and the availability 
to academic research of publicly funded health databases 
including routinely collected general practice records 
represent an opportunity to better evaluate this hypoth-
esis [6]. Electronic health records are digital versions of 
patients’ medical history, containing healthcare-related 
data such as diagnoses and treatments. The widespread 
adoption of electronic health records in healthcare systems 
had led to the accumulation of vast amounts of longitu-
dinal data, which can be harnessed to analyse health out-
comes throughout an individual’s lifetime.

However, analyzing health records can be challenging. 
In this setting, the use of unsupervised exploratory analy-
sis may be required to facilitate description of the main 
patterns of multimorbidity, guiding further research 
towards relevant underlying conceptual models.

Importantly, the analysis of electronic health records 
enables data interpretation within patients’ socio-demo-
graphic contexts, thereby supporting the development 
of public health preventive strategies targeting potential 
modifiable risk factors in identified subpopulations.

We propose in this paper a novel unsupervised cluster-
ing approach to multiple time-to-event records, denoted 
as multiple state analysis. In the setting of observational 
studies for instance, this method allows to handle, for 
each analysed patient a potentially large numbers of LTCs 
in order to obtain clusters of health trajectories charac-
terised by major sequences of analysed LTCs.

We applied multiple state analysis to electronic health 
records of LTCs associated with myocardial infarction, 

including the conventional cardiovascular risk factors 
(CVRFs) such as diabetes and hypertension, collected 
from south London general practices between April 2005 
and April 2021. In addition to well-documented trajec-
tories, such as the association of hypertension and dia-
betes with cardiovascular diseases [7], this research aims 
at identifying less common patterns of multimorbidity 
characterized by non-conventional sequences of LTCs.

Myocardial infarction, leading to “heart attack”, is one 
of the leading causes of death in high-income countries 
[8]. Myocardial infarction is caused by decreased or com-
plete cessation of blood flow in the myocardium and 
results in irreversible damage to the heart muscle [9]. 
Most of the time, myocardial infarction is due to underly-
ing coronary artery disease [10]. Conventional modifiable 
risk factors associated with coronary artery disease and 
myocardial infarction include smoking, abnormal blood 
lipid profile, hypertension, diabetes, abdominal obesity, 
psycho-social factors, diet, physical inactivity and alcohol 
consumption (protective) [11, 12]. Some non-modifiable 
risk factors associated with myocardial infarction include 
advanced age, male gender (males tend to have myocar-
dial infarction earlier in life) and genetics [12, 13].

This paper is organized as follows: in the  Back-
ground  section, multiple state analysis is presented. 
In  the Methods section, an application of multiple state 
analysis to the analysis of electronic health records of 26 
LTCs in patients with myocardial infarction is conducted. 
Finally in  the Multiple state analysis of multimorbidity 
associated with myocardial infarction  section, the pro-
posed method is briefly discussed in light of the study 
results.

Methods
Multiple state analysis is an unsupervised cluster-
ing approach to multiple time-to-event records. It is 
designed to handle and analyse series of events associ-
ated with each instance of a population, such as a set of 
LTCs recorded in a cohort of patients. In the epidemi-
ological setting, the objective is to create a typology of 
the main patterns of multimorbidity, allowing therefore 
a simplified description of analysed cohorts in terms of 
the main underlying patterns of multimorbidity. This 
objective is achieved by applying the principles of unsu-
pervised clustering analyses [14]: given a relevant met-
rics, pairwise patients’ dissimilarities are computed 
before a clustering method is applied and a typology of 
the main health trajectories is defined. Further investiga-
tions includes evaluating the association between identi-
fied clusters and socio-demographic characteristics and 
other CVRFs.
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Individual patient’s state matrix and group summaries
In order to compute patients’ pairwise dissimilarities, 
multiple state analysis requires patients’ health records 
to be formatted into multiple indicator tracks, stacked 
in t × k state matrices, t and k being the maximum age 
observed in the cohort and the total number of recorded 
LTCs, respectively.

If onset of disease l for patient j is tol,j , this patient’s state 
matrix is noted: Mj

.l = I[t≥tol,j ]
 , where Mj

.l stands for column l of 
matrix Mj , and I is the positive integer indicator function. 
For instance, in the example here after, examination of 
patient j’s state matrix ( Mj ) indicate that the analysis is 
conducted on LTCs a, b, c, d and e from 0 to 99 years, 
onset of diseases a, b, c, and e being 2, 46, 47 and 48 
respectively. Patients may also be censored or experience a 
competing event such as death or may be lost of follow up.
τ being patients’ censoring times vector, cj = I[t≥τj] rep-

resents patient’s j censoring indicator and c̄j = I[t<τj ]
 , the 

follow up period indicator for patient j. In the proposed 
example, patient j is censored at age 83.

Alternatively, in cases EHRs shows evidence that 
patient j is cured from long term condition l at time 
tcl,j < τj , their state matrix would be modified such that 
M

j
.l = I[tol,j≤t≤tcl,j ]

 . This later expression of M is a more general 
formula of a patient state matrix. From the previous 
example, if EHRs indicate that patient j is cured from dis-
eases b at 48 years, for instance, their state matrix M ′j 
would be:

(1)

Dissimilarity index matrix
The objective pursued when creating a typology of patients 
based on their profiles of LTCs is to categorise patients 
such that patients belonging to the same clusters share 
similar trajectories relatively to patients belonging to other 
clusters. This process implies therefore the use of a dis-
similarity (or distance) metric in order to obtain pairwise 
patients’ profile dissimilarities. Based on the resulting dis-
tance matrix or dissimilarity index matrix, a clustering 
method can be applied to finally define a typology.

As multiple state analysis deals with state indicators, 
the relationship between two patients, regarding a given 
LTC can be summarised using a 2 × 2 contingency table 
such as: [(p, r), (s, q)], 

	(i)	 q being the number of matching time units during 
which both patients were affected by a given LTC,

	(ii)	 p being the number of matching time units during 
which both patients were free from the considered 
LTC,

	(iii)	 s and r being the number of matching time units 
during which both patients were in different states 
of health regarding the specified LTC and,

	(iv)	 t being the length of the sequence.

In this setting, the dissimilarity between profiles xi and xj 
can be written as:

Considering states of illness as more informative than 
healthy states and omitting p, the number of negative 

(2)

d(xi, xj) = r+s
q+r+s+p .

q + r + s + p = t
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matches in the denominator, leads to the Jaccard dissimi-
larity index [15]:

Since r + s = t − p− q , we can rewrite the above rela-
tion as follows:

A composite analogue to the Jaccard dissimilarity index when 
considering indicators from multiple states can be derived as:

i.e. Q and P are the sum of q and p over all considered LTCs.
Using the matrix notations (1 or 2) from Individual 

patient’s state matrix and group summaries  section and 
setting ¯Ci as the t × t diagonal matrix with c̄i as diago-
nal entries, the censored quantities defined above can be 
conveniently computed as:

where tr denotes the trace operator and 1 is the t × k 
matrix with all entries are set to 1.

As an illustration, let’s consider health records of two 
patients, patient i having a record of diabetes (dm) at 55 and 
a record of hypertension (hyp) at 53, and patient j having a 
record of diabetes at 52 and a record of hypertension at 59.

The state matrices of these patients are:

d(xi, xj) =
r + s

q + r + s
= 1−

q

q + r + s
.

(3)d(xi, xj) = 1−
q

t − p
.

(4)
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,

The composite Jaccard dissimilarity index proposed in 
(4) computed between patient i and j for diabetes and 
hypertension is computed as follow:

•	 compute the total number of time units considered: 

•	 compute the number of matching time units dur-
ing which both patients were in the same state of 
health: 

•	 compute the number of matching time units during 
which both patients were free from the considered 
LTCs: 

•	 get the Jaccard dissimilarity index using (3): 

Clustering method
Although multiple state analysis is not restricted to a 
specific clustering procedure, we have used in this paper 
the Ward’s hierarchical clustering method [16]. At the 
starting point of this procedure, each instance is consid-
ered as a cluster of its own, then clusters are recursively 
merged such that the resulting cluster structure presents 
the minimum cost in terms of the within-clusters dissimi-
larity, which often results in compact and well-defined 
clusters [17]. Although originally proposed in a Euclidean 
setting, the Ward’s method can be generalized to dissimi-
larity measures, such as the Jaccard dissimilarity, using 
the Lance-Williams formula and the coefficients associ-
ated with Ward’s method [18], provided the dissimilarity 
measure satisfies non-negativity and symmetry.

The Lance-Williams formula is given by the following 
expression:

in which the dissimilarity between merged clusters i and 
j and cluster k ( d(Ci ∪ Cj ,Ck) ), is expressed as a linear 
combination of the dissimilarities between involved clus-
ters without explicit reference to the type of metrics used 
to compute the dissimilarity matrix between instances. 
The Lance-Williams coefficients associated with the 
Ward’s method are expressed as follows:

t∗ = 11× 2 = 22,

Q = qdm + qhyp = 6+ 2 = 8,

P = pdm + phyp = 2+ 3 = 5,

d(mi
,mj) = 1−

Q

t∗ − P
= 1−

8

22− 5
=

9

17
.

d(Ci ∪ Cj ,Ck ) =αid(Ci ,Ck )+ αjd(Cj ,Ck )+ βd(Ci ,Cj)

+ γ |d(Ci ,Ck )− d(Cj ,Ck )|,
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where |Ci| represent the size of cluster i.

MSCA algorithm time complexity
A critical point inherently associated with MSCA is 
its computational cost. Instead of clustering a reduced 
set of long term conditions based on a set of patients, 
MSCA is a patient-oriented method that produces a 
typology of patients sharing similar health trajecto-
ries. On the one hand, although this strategy allows for 
capturing patients pairwise longitudinal dissimilarities 
through the computation of state matrices, the compu-
tation cost associated with Ward’s clustering method 
(theoretical time complexity: O(n3) ) and the patient-
wise dissimilarity matrix (time complexity: O(n2) ) 
represents a significant consideration when applying 
MSCA.

Practically, the use of the fastclust C++-implemented 
routines [19] to perform the Ward’s clustering method, 
through its interfaces to R’s hclust or Python’s scipy.clus-
ter.hierarchy.linkage, reduces the observed runtime to 
O(n2) in many cases [20], making it scalable for larger 
datasets.

For n patients, given a symmetric dissimilarity meas-
ure, the pairwise dissimilarities between all patients can 
be stored in an upper triangular matrix of size n, cor-
responding to n(n−1)

2
 distinct elements (hence its O(n2) 

time complexity). The time complexity associated with 
the computation of the Jaccard dissimilarity between two 
time-aligned sequences of length t scales linearly with t, 
i.e. O(t). Therefore, the time complexity associated with 
the computation of the dissimilarity matrix is O(n2 · l · t) , 
l being the number of long-term condition considered. 
This can be approximated as O(n2) when l · t is much 
smaller than the number of patients n . In scenarios where 
n is large, it may therefore be relevant to optimize the 
time granularity to effectively reduce MSCA computa-
tional cost.

In the next section, we propose an application of 
MSCA to the analysis of multimorbidity associated with 
myocardial infarction.

Multiple state analysis of multimorbidity 
associated with myocardial infarction
To illustrate multiple state analysis we have conducted 
an analysis of multimorbidity associated with myocardial 
infarction using electronic health records of 26 long-term 
conditions including conventional cardiovascular risk 























αi =
|Ci|+|Ck |

|Ci|+|Cj |+|Ck |

αj =
|Cj |+|Ck |

|Ci|+|Cj |+|Ck |

β = −
|Ck |

|Ci|+|Cj |+|Ck |

γ = 0

,

factors such as diabetes and hypertension, collected from 
south London general practices between 2005 and 2021 
in 5087 patients.

Patients and method
Primary care registry
We considered electronic health records of 27 common 
LTCs (including myocardial infarction) in adult patients 
aged over 18 and registered in 41 general practices 
in south London between April 2005 and April 2021. 
Recorded LTCs are listed in Table 1. Briefly, the proposed 
list includes conventional CVRFs such as hypertension, 
and diabetes, but also LTCs a priori less related or non-
directly related to myocardial infarction such as cancers, 
chronic kidney disease, asthma, and chronic obstruc-
tive pulmonary disease (COPD). Patients’ electronic files 
included the date at which any of the considered LTCs 
were first ever recorded.

Socio-demographic variables and risk factors collected 
were: age, gender, ethnicity (asian, black, mixed and 
other, and white), polymediaction status (defined as eight 
or more different medications in different BNF (British 
National Formulary) chapters and sub headings, quintile 
of locally calculated index of multiple deprivation (IMD) 
2019, hypercholesterolaemia (total cholesterol over 5.0 
mmol/L) and current or ex smoking habits. Data were 
provided by the Lambeth DataNet and approval for the 
analysis of fully anonymised data was granted by Lam-
beth DataNet Clinical Commissioning Group and Infor-
mation Governance Steering Group.

Statistical analysis
The analysis was conducted on patients with a record 
of myocardial infarction, according to the 3 steps 
described in Methods section: i) arrange patients indi-
vidual records into multiple time-to-event indica-
tors stacked in individual patients’ state matrices and 
censoring indicators, ii) compute pairwise patients’ 
dissimilarities on individual state matrices (and censor-
ing indicators) and apply a clustering method, and iii) 
define a typology.

State matrices were computed considering records 
associated with the 27 LTCs displayed in Table  1. Fig-
ure 1 displays state matrices computed using records of 
8 LTCs associated with nine patients randomly sampled 
from the analysed cohort.

Pairwise dissimilarities between patients were com-
puted using the Jaccard dissimilarity index [15] as 
described in Dissimilarity index matrix section. The Jac-
card coefficient, is a measure of dissimilarity between 
binary samples, such as state indicators. Finally, 
agglomerative hierarchical clustering was computed 
using the Lance-Williams formula with coefficients 
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corresponding to the Ward’s method, and the point 
biserial correlation was used to determine the optimal 
size for the typology given a convenient and workable 
range (from two to 14) [21].

Graphical representation
For a better understanding the link between onset of 
myocardial infarction and associated LTCs in defined 
clusters, we used a graphical representation displaying 
health conditions as dots whose x-coordinate represents 
the median age at onset. On the y axis, dots are conveni-
ently assigned to layers, such that significant transitions 
are represented by edges oriented from higher to lower 
levels [22].

Statistical analysis of cluster trajectories
Socio-demographics, conventional CVRFs and LTC 
indicators, were displayed as frequencies and percent-
age or median and interquartile range as appropriate. 

Associations between variables and clusters were tested 
using the Fisher exact test or using Kruskal-Wallis test 
for numeric variables (Table 2). Multivariate associations 
between clusters and socio-demographic variables, con-
ventional CVRFs, and LTCs were estimated using logistic 
regressions where cluster indicators were explained by 
tested variables. Results were displayed using heatmaps 
where estimates associated with P values greater than 5% 
were omitted (Fig. 3). All computations were performed 
using the R language and environment for statistical 
computing (version 4.3.0 (2023-04-21)) [23]. State matri-
ces and patients pairwise distances were computed using 
the MSCA R library [24].

Results
The study workflow is displayed Fig.  2. Of 856,342 reg-
istered patients 5087 (0.59%) had a record of myocardial 
infarction (Tables 2 and 3). This corresponds to an inci-
dence rate of 100.95 cases per 100,000 person-years. The 

Table 1  Long term conditions analysed: long-term conditions are classified according to the 10th international classification of 
diseases (ICD-10)

Category ICD-10 code Long-term condition

Neoplasms C00-C97 Malignant neoplasms

Diseases of the circulatory system I60-I64 Stroke

I50 Heart failure

I73 Peripheral vascular disease

I48 Atrial fibrillation

I10 Hypertension

I21 Acute myocardial infarction (MI)

G45 Transient cerebral ischemic attacks

Certain infectious and parasitic diseases B15-B19 Viral hepatitis

Diseases of the musculoskeletal system and connective tissue M05-M06 Rheumatoid arthritis

M15-M19 Osteoarthritis

M80-M82 Osteoporosis

Diseases of the digestive system K50-K52 Inflammatory bowel disease (IBD)

K70-K76 Chronic liver disease and cirrhosis

Diseases of the genitourinary system N18 Chronic kidney disease stage 3 to stage 5 (CKD 3–5)

Mental, Behavioral and Neurodevelopmental disorders F40-F41 Anxiety disorders

F32 Depression

F20-F29 Other serious mental illness

F10 Alcohol dependence

F11-F19 Other substance dependency

Endocrine, nutritional and metabolic diseases E10-E14 Diabetes

E66 Morbid obesity

Diseases of the nervous system G20 Parkinson’s

G40-G41 Epilepsy

F00-F03, G30 Dementia

Diseases of the respiratory system J45-J46 Asthma

J44 Chronic Obstructive Pulmonary Disease (COPD)
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median age at onset of myocardial infarction was 61.5. 
Among patients with a record of myocardial infarction, 
32.2% were female, 49.3% were white and the majority 
(66.7%) of the population belonged to IMD quintile 1–2 
(most deprived vs quintile 3–5 (less deprived)). The main 
LTCs associated with myocardial infarction were hyper-
tension (67.2%) and diabetes (39.2%) and the median 
number of LTCs associated with myocardial infarction 
was 5 (IQR: 3). The median follow-up was 9.6 years, 
61.7% of patients were censored or died at end of follow-
up (39.3%) (Table 2).

After pairwise patients’ dissimilarity computation and 
clustering, an 11 clusters partition was retained. This par-
tition size corresponds to a local maximum of the point 
biserial correlation for a range extending from two to 14 
clusters [21].

Typology annotation
Clusters were ordered by decreasing frequency, and 
numbered from 1 to 11. Cluster 1 represents 1017 
patients (20.0%) and clusters 11 represents 172 patients 
(3.4%). Table 2 displays socio-demographic variables and 
risk factors distribution across clusters. Alternatively, 
Fig.  3 displays the multivariate log-odds ratio of socio-
demographic variables and risk factors (upper panel) and 
LTCs (lower panel) across clusters. Additionally a graphi-
cal representations of time at onset of myocardial infarc-
tion and highly associated LTCs in proposed in Fig.  4, 
and Fig.  5 displays an interpretation of the proposed 
typology according to clusters’ prevalence in hyperten-
sion and diabetes. Finally, Table  4 displays the number 
of sequences of length 2 across the different clusters 
and detail sequences shared by at least 30% of patients 

Fig. 1  Examples of patients’ state matrices: censored status of 8 long-term conditions are considered from 0 to 104 years old in nine patient 
randomly sampled from patients’ cohort. Patients’ status are represented by state indicators for each displayed long-term condition. If during its 
follow up a patient remains free from a given long-term conditions, the corresponding state indicator will remain zeros from the age of zero 
to the age at which patient’s follow up ends. If for instance, a patient is diagnosed with hypertension at 50 years, patient’s state indicator 
for hypertension will be zero from zero to 49 years old, and one from 50 years old to the end of patient’s follow up
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in the corresponding cluster as well as the percentage of 
patients following this sequence in that cluster.

Clusters examination
Clusters showed distinct demographic characteristics and 
levels of the conventional CVRFs such as age at onset (clus-
ters 5 and 10) , hypertension (cluster 2, 4, 5) and diabetes 
(clusters 6 and 10). Conversely, other clusters were highly 
associated with specific non-conventional CVRFs, such as 
higher number of recorder LTCs (clusters 1, 3 and 11), men-
tal health conditions (cluster 3), Osteoarthritis (cluster 8) 
and asthma (cluster 11). Finally, other clusters (7 and 9) were 
characterised with significantly lower prevalence of hyper-
tension and/or diabetes, a lower number of recorded LTCs 
as well as lower prevalence of mental health conditions. 
Non-conventional CVRFs associated with these clusters 
were peripheral vascular disease and COPD (cluster 7) and 
atrial fibrillation (cluster 9) (Tables 2, 3 and Fig. 5).

Conclusions
We have presented in this paper a novel approach to the 
unsupervised analysis of multiple time-to-event records 
denoted as multiple state analysis with application to 

the analysis of electronic health records in patients with 
myocardial infarction.

Similar to clustering methodology developed in other 
fields of research [25–27], multiple state analysis follows 
the general principle of cluster analysis where individu-
als are grouped according to a systematic rule. However, 
unlike the analysis of sequences developed in the field of 
the social sciences, in which multiple aspects of the social 
experience, such as marital and employment status, are 
jointly analysed [26, 27], the proposed method does not 
deal primarily with constructed sequence of data but 
binary coding of individual records into states matri-
ces and associated follow up indicators. Importantly, 
if meaningful sequences of LTCs may be derived from 
resulting clusters, electronic health records and associ-
ated state matrices are not sequences of events.

This aspect is important in the context of epidemio-
logical research where patients’ state of health are often 
characterized by the accrual of two or more LTCs, that 
may occur simultaneously or in a short period of time 
[28]. In this setting, the simple record of events and the 
subsequent analysis of resulting sequences may be mis-
leading and fail to fully render the evolution of patients’ 

Fig. 2  Study workflow
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states of health. This limitation is due to i) the multiplic-
ity of sequences that can be derived from a unique set of 
electronic health records, ii) the non-univocal interpreta-
tion of electronic health records in presence of ties, and 

iii) the non-mutual exclusivity of events under investi-
gation, such as the onset of multiple LTCs, for instance. 
One the other hand, the definition and use of state matri-
ces allow to conveniently measure distances between 

Fig. 3  Log-odds ratio of socio-demographic variables and risk factors associated (upper panel), and acute and long-term conditions (lower panel) 
across clusters: values are derived from multivariate logistic regressions where clusters’ indicators were explained by displayed variables. Positive 
log-odds ratio illustrate an over representation of the corresponding traits in a given cluster as compared to other analysed patients. Estimates 
associated with P values greater than 5% were omitted
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patients without reducing patients’ health trajectories 
to a particular sequence. This allows to handle arbitrary 
large number of potentially concomitant and non-exclu-
sive LTCs without making a priori choices regarding the 
importance of input variables, as it is the case in sequence 
analyses.

Other important aspects of unsupervised clustering 
methods involve the choice of a dissimilarity metric and 
a clustering algorithm. We proposed in our study the Jac-
card dissimilarity index associated the Ward’s hierarchi-
cal clustering approach. Also referred to as the binary 

metric, the Jaccard index allows to conveniently compare 
multiple instances based on binary attributes such as 
state indicators. In the clinical setting, the Jaccard index 
provides also a meaningful epidemiological interpreta-
tion: it represents, for two patients and for a given long-
term condition, the number of matching time units these 
patients spent in different states of health over the period 
either patient have presented a record of the investigated 
disease. Conversely, the longer two patients remained 
simultaneously in the same state of health, the smaller 
the Jaccard index and the more likely these patients to be 

Fig. 4  Graphical representation of clusters: long-term conditions are represented by colored dots. Dots x-coordinate represents the median 
age at onset of the given long-term condition. Dots are presented on the y axis according to layers, such that no significant transitions exist 
between dots from the same layer. Significant transitions are represented by edges oriented from a higher level to a lower levels
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co-clustered, which meets assigned objectives. Another 
interesting feature associated with the use of the Jaccard 
index is a certain robustness to censored measurements. 
This is due to the implicit censoring of periods simulta-
neously free from a given condition when computing 
the index between two patients, much like when one of 
them is actually censored. The Ward’s method used in 
this paper aim at minimizing the within-cluster dissimi-
larity and results often in compact and well-defined clus-
ters [17] and represents a consensual choice in clustering 
analyses [26, 27, 29, 30].

In an application of multiple state analysis to multi-
morbidity associated with myocardial infraction, we 
analysed 5093 patients with respect to up to 26 LTCs 
and various follow-up times. Following our strategy, 

patients were mapped back to a limited number of clus-
ters, characterised by distinct patterns of multimor-
bidity and sequences of LTCs. Interestingly, resulting 
clusters had also distinctive socio-demographic char-
acteristics and levels of the conventional CVRFs such 
as age at onset of myocardial infarction (clusters 5 and 
10), hypertension (clusters 2, 4, 5) and diabetes (clusters 
6 and 10). Conversely, other clusters were highly associ-
ated with specific non-conventional risk factors, such 
as higher number of recorder LTCs (clusters 1, 3 and 
11), mental health conditions (cluster 3), osteoarthri-
tis (cluster 8) and asthma (cluster 11). Of note, 2 clus-
ters (7 and 9) were characterised by significantly lower 
prevalence of hypertension and/or diabetes, a lower 
number of recorded LTCs as well as lower prevalence 

Fig. 5  Graphical typology annotation: The typology is divided in two main branches. The conventional cardiovascular risk factors branch includes 
clusters associated with hypertension (clusters 2, 4 and 5) as well as clusters associated with diabetes (clusters 6 and 10). The other main branch 
is composed by clusters characterised by non conventional risk factors (clusters 1, 3, 7, 8, 9 and 11) among which clusters 7 and 9 present lower 
prevalence of hypertension and recorded long-term conditions
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of mental health conditions. Non-conventional risk 
factors associated with these clusters were peripheral 
vascular disease and COPD (cluster 7) and atrial fibril-
lation (cluster 9).

Association between these non-conventional risk fac-
tors and myocardial infarction have been previously 

reported with various levels of evidence [31–35]. Con-
ventional assumptions regarding these possible associa-
tions include i) the shared risk factors hypotheses [31, 
36], ii) the complications induced by long-term expo-
sures to pharmacotherapies used in the treatment of 
these LTCs, such as non-steroidal anti-inflammatories 

Table 4  Main sequences of length 2 accross clusters

a  Number of sequences of size 2 observed in the corresponding cluster

 b Proportion of patients presenting the sequence

 c Proportion of patients diagnosed with the second long-term condition given the first condition has been diagnosed

Sequences Statistics

Cluster# Number of 
sequencesa

From To Supportb (%) Confidencec (%)

1 904 Myocardial Infarction Censoring 53.1 53.1

Hypertension Myocardial Infarction 44.2 68.5

Myocardial Infarction Death 41.6 41.6

2 735 Myocardial Infarction Censoring 74.7 74.7

Hypertension Myocardial Infarction 46.5 58.0

Myocardial Infarction Hypertension 33.6 33.6

3 828 Myocardial Infarction Censoring 70.2 70.2

Depression Myocardial Infarction 61.7 82.7

Anxiety Myocardial Infarction 37.6 73.5

4 680 Hypertension Myocardial Infarction 78.3 79.5

Myocardial Infarction Censoring 62.0 62.0

Myocardial Infarction Death 35.2 35.2

5 556 Myocardial Infarction Death 61.5 61.5

Hypertension Myocardial Infarction 52.5 68.2

Myocardial Infarction Censoring 30.9 30.9

6 623 Diabetes Myocardial Infarction 85.8 86.0

Myocardial Infarction Censoring 67.2 67.2

Hypertension Myocardial Infarction 49.2 68.7

Myocardial Infarction Death 30.6 30.6

7 526 Myocardial Infarction Censoring 60.5 60.5

Myocardial Infarction Death 38.3 38.3

Myocardial Infarction Hypertension 37.7 37.7

8 582 Osteoarthritis Myocardial Infarction 82.4 83.9

Myocardial Infarction Censoring 58.5 58.5

Hypertension Myocardial Infarction 46.7 68.0

Myocardial Infarction Death 36.5 36.5

9 514 Myocardial Infarction Death 51.6 51.6

Myocardial Infarction Censoring 47.5 47.5

Myocardial Infarction Hypertension 43.6 43.6

10 525 Diabetes Myocardial Infarction 86.4 86.8

Hypertension Myocardial Infarction 57.2 79.9

Myocardial Infarction Censoring 50.0 50.0

Myocardial Infarction Death 46.2 46.2

11 652 Asthma Myocardial Infarction 94.8 98.8

Myocardial Infarction Censoring 76.2 76.2

Hypertension Myocardial Infarction 38.4 75.0

Depression Myocardial Infarction 34.3 72.8
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used in the treatment of ostheoarthritis [37], beta-2 
agonists and systemic corticosteroids used in the treat-
ment of asthma [38–40] and antipsychotic drugs used 
in the treatment of mental health disorders [41], and iii) 
induced restrictions on physical activity [36], which in 
return are associated with increased levels of CVRFs 
such as hypercholesterolaemia, hypertension and 
diabetes.

Examination of the typology created using multiple 
state analysis shows that resulting clusters of patients 
were discriminated not only in terms of the main myo-
cardial infarction driving LTCs but also with respect 
to major socio-demographics variables including age, 
gender and ethnicity, as well as other CVRFs such as 
hypercholesterolaemia or ever smoking status. There-
fore, assuming that different early life lifestyle and 
exposures, possibly mediated by genotype and envi-
ronment factors, result in distinct patterns of multi-
morbidity, tractable through the continuous record of 
health conditions, our results support both the envi-
ronmental and the genotype / environment hypothesis 
of life course epidemiology. From a public health per-
spective however, underlying models are not of prime 
importance as public health policies would rather 
focus on the modifiable risk factors. To this regard, 
although multiple state clustering analysis presents 
itself as a relevant methodological approach to elec-
tronic health records–allowing patients’ stratification 
in terms of both the main driving LTCs as well as asso-
ciated socio-demographic variables–further research 
is needed. This includes a deeper assessment of typol-
ogies resulting from this methodology, particularly 
in therms of their clinical and public health utility, to 
better evaluate its potential for for informing patient-
oriented health policies.
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