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Abstract 

Background Understanding sample representativeness is key to interpreting findings from epidemiological research 
and applying these findings to broader populations. Though techniques for assessing sample representativeness 
are available, they rely on access to raw data detailing the population of interest which are often not readily avail‑
able and may not be suitable for comparing large datasets. In reality, population‑based data are often only available 
in an aggregated format. In this study, we aimed to examine the capability of population stability index (PSI), a popu‑
lar metric to assess data drift for artificial intelligence studies, in detecting sample differences using population‑based 
data.

Method We obtained United States cancer statistics from the National Cancer Institute’s Surveillance, Epidemiol‑
ogy, and End Results (SEER) database. We queried the SEER 17‑registry research database to obtain cancer count data 
by age, sex, and cancer site groups from the rate sessions of the SEER*State incidence database for 2000 and 2015 – 
2020. We then calculated PSI scores to estimate yearly data distribution shift from 2015 to 2020 for each variable. We 
compared the PSI results to the Chi‑Square and Cramér’s V tests for the same comparisons.

Results Scores for PSI comparing age, sex, and cancer site distribution between years ranged widely from 2.96 
to less than 0.01. In line with our expectations, we found moderate to substantial differences in cancer population 
characteristics between 2000 and all other included years using PSI. Despite small effect sizes (Cramér’s V 0.01 – 0.09), 
Chi‑Square tests were significant for most comparisons, indicating likely type‑I error caused by our large sample.

Conclusions Population stability index can be used to examine sample differences in healthcare studies 
where only binned data are available or where large datasets may reduce the reliability of other metrics. Inclu‑
sion of PSI in epidemiological research will give greater confidence that results are representative of the general 
population.

Keywords Population stability index, Sample representativeness, Big data analytic

Background
In descriptive epidemiological studies, the representa-
tiveness of study samples is a cornerstone of gener-
alizability and the application of findings to wider 
populations [1, 2]. It is well-established in the literature 
that poor sample representativeness leads to biased 
associations and/or suboptimal policy decision-mak-
ing [3, 4]. Although researchers suggested that sample 
representativeness is not essential for causal relation-
ship studies, sample representativeness assessment is 

*Correspondence:
Sheng‑Chieh Lu
slu4@mdanderson.org
1 Department of Symptom Research, The University of Texas MD 
Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX 77030, 
USA
2 Department of Obstetrics & Gynecology, Heidelberg University Hospital, 
Im Neuenheimer Feld 672, Heidelberg 69120, Germany
3 National Center for Tumor Diseases (NCT)and, German Cancer Research 
Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-025-02474-9&domain=pdf


Page 2 of 8Lu et al. BMC Medical Research Methodology           (2025) 25:44 

necessary to ensure the proper application of the infer-
ence [5].

As data volume and the availability of population-
based, real-world data increase, classic approaches for 
sample representativeness evaluation suffer from the 
over-powering issue of catching subtle, clinically mean-
ingless differences between samples [6]. Epidemiologists 
have developed representativeness assessment metrics 
that provide better estimation of differences in large sam-
ples [7–10]. An example is Representativity indicators 
(R-indicators) that was first developed to estimate the 
differences between responders and non-responders in 
survey studies [8] and later applied to other studies for 
sample representativeness assessment [6]. R-indicators 
estimate overall sample representativeness based on the 
standard deviation of sample propensities [7]. However, 
the use of raw data of R-indicators can be a challenge 
when comparing study samples to population-based data 
for sample representative assessment as most popula-
tion-based data, such as the National Cancer Institute’s 
Surveillance, Epidemiology, and End Results (SEER) data, 
are only available in a post-aggregated format without 
additional access permission.

Despite the use of different terminology, the impor-
tance of sample representativeness is also highlighted 
by artificial intelligence (AI) and machine learning (ML) 
studies leveraging high-dimensional, huge-volume data 
[11, 12]. AI and ML fields use the term “data drift” or 
“concept drift” to describe the existence of differences 
in variable distributions between the sample used to 
train a model and the sample fed to the model for pre-
diction. Therefore, concept drift and lack of sample rep-
resentativeness are conceptually the same. As model 
performance can significantly decrease when feature drift 
happens [12], most, if not all, ML solutions highlight the 
need to detect drift after model deployment and offer 
various ways for automatic concept drift detection [13].

Population index stability (PSI) is a sample distribution 
distance-based statistic for measuring sample similarity 
[14, 15]. PSI measures the distribution differences in each 
class of a variable between samples and provides an over-
all score of the variable by summing the scores of each 
class. As such, PSI accepts only categorical variables, and 
numeric variables need to be binned to enable the use of 
PSI. The possible score of PSI ranges from 0 to 1, with a 
larger value representing greater differences in the vari-
able between samples. A general rule adopted in practice 
to interpret a PSI result is: PSI < 0.1 represents no differ-
ence, PSI > = 0.25 indicates a significant difference, and 
any score between the two represents a slight difference 
[14].

Population index stability is a widely used metric in 
AI and ML fields to determine whether a predictive 

model needs refinement due to data changes over time 
[14]. However, the discussion on using PSI in healthcare 
research is limited. It is unclear whether PSI can be an 
alternative to established representativeness metrics 
when raw reference sample data is unavailable. The pur-
pose of this study was to examine the capability of PSI in 
detecting differences in population-based samples. Spe-
cifically, we applied PSI to assess distribution changes in 
age, gender, and cancer types of the U.S. cancer popula-
tion over time using SEER data.

Methods
For this study, we extracted sex, age, and cancer type 
data of the U.S. cancer population from the Surveillance, 
Epidemiology, and End Results (SEER) [16]. We calcu-
lated PSI for each variable to compare the populations 
between all possible year-pairs across 2015 and 2020. 
We also extracted and compared data from the year 2000 
to all other years to evaluate whether PSI could capture 
differences in data distributions that we hypothesized 
were likely to have occurred in a 15–20 year timeframe. 
We examined the PSI results by comparing them to the 
results from Chi-Square tests. This research was deemed 
exempt from ethical review because of the use of pub-
licly-available anonymous data without human subject 
involvement.

Data
We obtained U.S. cancer population statistics from the 
SEER database for this study. The SEER database, sup-
ported and maintained by the National Cancer Institute, 
collects comprehensive, population-based U.S. cancer 
incidence and survival data alongside cancer patient 
demographics, tumor information, diagnosis, and treat-
ment data since 1973. The database is updated yearly and 
used to support oncology research and inform policy 
decision-making throughout the USA [17]. We down-
loaded aggregated data using the SEER*Stat Software 
(version 8.4.3).

We queried the SEER 17-registry research database 
submitted in November 2022. We obtained cancer count 
data by age, sex, and cancer site groups from the rate ses-
sions of the SEER*State incidence database. For cancer 
site groups, we extracted incidence rate and patient count 
data for Lung, Breast, Colorectal, Genitourinary, and 
Melanoma. We obtained data for 2000 and 2015—2020.

Population Stability Index (PSI)
We calculated PSI for sex, age group, and cancer type 
using the equation PSI = k

i=1
(Oi − Ei)× ln

Oi

Ei

 , where k repre-
sents the total number of categories for the variable of 
interest, O is the percentage of patients in a category in 
the scoring sample, and E is the percentage of patients in 
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a category in the reference sample [15]. We used the 
equation to calculate the PSI scores to estimate yearly 
data distribution shifting from 2015 to 2020 for each var-
iable. For instance, we used age-group data from 2015 as 
a referencing sample and from 2016 as a scoring sample 
to calculate the PSI for the age-group data distribution 
change estimate. As no definitive gold standard reference 
for sample representativeness exists, we used PSI to com-
pare the distribution differences in selected variables 
between years with the early year in each comparison as a 
reference sample to depict relative sample similarity for 
each year-pair.

We manually computed PSIs to ensure the compatibil-
ity of the calculation with aggregated data we obtained 
from the SEER database. We used widely used cut-off 
points of 0.1 and 0.25 in informatics literature to inter-
pret PSI results, with PSI < 0.1 representing no distribu-
tion differences between samples, PSI > = 0.1 and < 0.25 
meaning moderate differences, and PSI > = 0.25 indicat-
ing significant differences [18, 19].

We tested PSI in a scenario where the differences in 
age, sex, and cancer group composition of the U.S. can-
cer population between years are expected and well-stud-
ied to ensure that there were sample differences for the 
PSI to detect. However, we expected that data distribu-
tion changes in consecutive years would be less notable 
and would not raise concerns about the presentation of 
ignorable sample differences. Therefore, we expected that 
PSI would not detect action-required data changes in any 
consecutive year comparison, but Chi-square tests may 
still flag the differences due to the large power. To dem-
onstrate the capability of PSI in detecting data changes, 
we compared data from each year to data from 2000 for 
each variable under the assumption that the composi-
tion of the U.S. cancer population is significantly different 
between 2000 and recent years.

Analyses
We conducted all analyses using the R statistical software 
package version 4.2.1 [20]. To demonstrate the advan-
tage of PSI in detecting distribution differences between 
large samples, we compared the PSI results to the results 
of Chi-square tests. We calculated the Chi-Square test 
scores for the comparisons we used to compute PSI 
scores. We adjusted the p-value using the Bonferroni 
approach for the Chi-square test due to multiple compar-
isons. For the comparisons showing significance in the 
Chi-Square test, we used Cramér’s V to estimate the size 
of differences between the samples [21]. In this study, we 
consider a Cramér’s V score < = 0.2 for a small effect size, 
a score > 0.2 and < = 0.6 representing a moderate effect 
size, and a score > 0.6 for a large effect size [22].

Results
We present a yearly summary of U.S. cancer population 
counts and percentages by age, sex, and cancer site group 
in Table 1.

PSI scores comparing age, sex, and cancer site distri-
bution between years ranged widely from 2.96 to less 
than 0.01 (Fig.  1). PSI scores indicate moderate to sig-
nificant differences in cancer population characteristics 
between 2000 and all other included years. PSI scores are 
less likely to reach the moderate or significant difference 
thresholds when the referencing and scoring years are 
closer.

The largest PSI was 2.96 for the age group comparison 
between 2016 and 2000. Further investigation of the com-
position of the PSI score reveals that there were nota-
bly more cancer individuals in the age groups of 60–64, 
65–69, and 75–79 years in 2016 (Table  2). We included 
the PSI calculation processes for all comparisons in the 
Online Appendix.

We included the Chi-Square test and effect size results 
in Fig.  2. The Chi-Square tests showed significance for 
most comparisons. On the other hand, Cramér’s V scores 
for the comparisons with significant Chi-Square scores 
revealed that the effect sizes were all small, ranging from 
less than 0.01 to 0.09.

Discussion
Quantitatively assessing differences in research samples 
provides a means to accurately describe sample repre-
sentativeness for observational studies and allow proper 
evaluation and informed use of scientific evidence. Many 
retrospective cohort studies in healthcare leverage elec-
tronic health record (EHR) data and discover knowl-
edge using massive data with much larger sample sizes 
than before. However, traditional tools, such as Pearson’s 
Chi-Square test and Student-T test, for the examination 
of sample differences have too much power to discard 
subtle differences that may not be clinically meaningful 
when the sample size increases to over a thousand peo-
ple [6, 10]. In this study, we examined the capacity of the 
population stability index (PSI) to detect sample differ-
ences and compared the PSI results to the Chi-Square 
test results. Our results suggest that PSI can detect differ-
ences in the distribution of given variables between two 
large samples and estimate the differences unaffected by 
the overpowering issue.

Our PSI results suggested that the U.S. cancer popu-
lation after 2015 significantly differs from the popula-
tion in 2000 in terms of sex, age, and cancer groups, but 
the differences between any two consecutive years are 
ignorable, aligning with previous epidemiology surveil-
lance reports [23]. On the other hand, the traditional 
approaches showed significance in most comparisons 
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after the application of an abnormally aggressive p-value 
adjustment with tiny V scores (< 0.01), indicating ignora-
ble differences. This may be problematic for comparisons 
between 2000 and recent years, such as 2015, as evidence 
has shown that the populations between the years are dif-
ferent [24]. Our findings suggest that PSI provides a bet-
ter estimate of sample differences when the sample size is 
large with an inevitable overpowering issue.

The PSI scores are the summation of the score for each 
category of the variate used to example sample differ-
ences. The breakdown scores provide additional infor-
mation to enable the identification of categories that 

contribute to the sample differences. The example we 
provided in the results section demonstrated that use 
of PSI to examine age group differences in U.S. cancer 
populations in 2000 and 2016 enables the findings that 
the U.S. cancer population is notably older than before. 
Although the age group comparison between 2000 and 
2016 may not provide meaningful information, the anal-
ysis can be utilized in other scenarios to guide further 
investigation or analysis approach adjustment. Exam-
ple scenarios include assessing cancer-type differences 
between immunotherapy patients with and without the 

Fig. 1 Population stability Index for year comparison pairs by age, sex, and cancer site. Note: ** represent PSI >= 0.25; * indicates PSI >= 0.1 and < 
0.25

Table 2 PSI comparing differences in age distribution for U.S. cancer population between year 2000 and 2016

Age group 2000 2016 Difference Natural logarithm PSI Total PSI

15–19 0.11 0.12 −0.01 −0.09 0 2.96

20–24 0.27 0.31 −0.03 −0.12 0

25–29 0.58 0.64 −0.06 −0.1 0.01

30–34 1.05 1.17 −0.12 −0.11 0.01

35–39 2.06 1.75 0.31 0.16 0.05

40–44 3.59 2.76 0.84 0.27 0.22

45–49 5.37 4.58 0.79 0.16 0.13

50–54 7.81 7.77 0.04 0.01 0

55–59 9.81 11.23 −1.43 −0.14 0.19

60–64 11.41 13.91 −2.5 −0.2 0.49

65–69 13.55 16.54 −2.99 −0.2 0.6

70–74 14.81 13.84 0.97 0.07 0.07

75–79 13.61 10.47 3.15 0.26 0.83

80–84 9.08 7.46 1.62 0.2 0.32

85+ 6.88 7.46 −0.58 −0.08 0.05
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development of adverse events using population-based 
data, comparing sample differences between control and 
intervention groups for large, multi-institutional clinical 
trials, and evaluating whether a machine learning model 
is applicable to a population.

Researchers have argued that statistical approaches 
for hypothesis testing using p-value should not be used 
to assess sample differences between large datasets 
without adjustment [25]. The rationale behind using the 
Chi-square test was to emphasize its limitation and to 
highlight that PSI can be used for sample representative-
ness estimation in a big data context. We were not able to 
compare PSI and other sample representativeness met-
rics designed for large sample comparisons due to the 
lack of suitable large data access. However, this limitation 
highlighted a notable advantage of PSI that it can be com-
puted using aggregated data. Most population databases, 
such as SEER, International Agency for Research on Can-
cer (IARC), and other disease-specific registry databases, 
are only available in an aggregated format without further 
permission. Therefore, few research teams can access and 
leverage raw population data to evaluate the representa-
tiveness of their samples using assessment metrics that 
require raw data, such as R indicators and standardized 
mean difference (SMD) approaches [7–9]. Our findings 
suggested that PSI can arguably be an alternative to those 
representativeness metrics developed by epidemiologists 
when raw population data are unavailable. When raw 
population data are available, PSI can complement the 
representativeness metrics, providing overall representa-
tiveness scores, as PSI enables information about differ-
ences in the category distribution of a variable in two 
samples.

Given the popularity of PSI in the AI and ML industry 
for monitoring feature drift in data, PSI has been widely 
implemented in many ML tool kits, such as Azure AI, 
Evidently AI, and Neptune AI. The current implementa-
tion of PSI in these ML packages that require raw con-
tinuous data can be improved by allowing the use of 
aggregated data to enable broader research teams to lev-
erage publicly available population data for sample repre-
sentativeness assessment. These AI tool kits also provide 
other sample similarity metrics, such as Kullback–Leibler 
(KL) divergence and Jensen-Shannon (JS) distance, which 
also require raw data. These metrics are similar to PSI 
estimating sample similarity based on differences in vari-
able distributions [14, 26]. Further research is needed to 
compare PSI and other distance-based metrics to corre-
late the results of these metrics.

It is also essential to discuss the limitations of PSI 
to examine sample differences. First, PSI requires the 
variable of interest to be categorical and needs numeri-
cal variables to be binned before score calculation. 
Thus, information loss may happen when discretizing 
numeric variables [27], and bin size selection can deter-
mine PSI scores [28], similar to plotting a histogram of 
a numeric variable of two samples. Second, although 
there is wide use of PSI in industry and researchers have 
tried to define the statistical property of the PSI score 
[28, 29], little discussion on the metric and the score 
interpretation is in the literature body. Further, PSI can-
not detect selection bias if the same selection bias exists 
in both samples.

The PSI score was designed for univariant compari-
sons, and thus, multivariant conditions were not con-
sidered. It was mostly used to detect data drifting in 
the AI/ML industry, with the primary goal of detecting 

Fig. 2 Cramér’s V effect size scores for year comparison pairs by age, sex, and cancer site. Note: *** represent p‑value<0.000047; ** indicates p‑value 
<0.00047; * means p‑value<0.0023



Page 7 of 8Lu et al. BMC Medical Research Methodology           (2025) 25:44  

notable changes in sample distribution for any variables 
[28]. It is possible to concatenate multiple variables into 
a single variable for each individual in the sample after 
binning them and calculating PSI scores for the con-
catenated variable. In this way, multiple variables were 
considered at once and may provide further informa-
tion about the sample representativeness. However, this 
approach would require access to raw data and thus 
could not be conducted in this analysis. Future experi-
ments are needed to explore the use of PSI for multivari-
ate analyses.With the limitations of PSI, we suggest the 
PSI is a good alternative for population representative-
ness evaluation when raw data is not available for other 
approaches, such as R indicators, and when the sample 
size is large that traditional statistics inevitably capture 
a significant difference in samples with a clinically ignor-
able effect size.

This study has limitations. First, due to the use of 
SEER data, all data accessible to us were aggregated 
and categorical. Therefore, we could not apply PSI to a 
numeric variable and compare its results to the Student 
T-test or ANOVA results or compare PSI to R-indica-
tors. Further, the dataset we used contains data from 
over 240,000 patients per year. This sample size may 
be greater than common big data studies with sample 
sizes ranging from 1,000 to 15,000. It is unclear whether 
the issues with inflated power of traditional approaches 
persists in such a sample size, thus requiring further 
investigation. There is also a need to examine the appli-
cability of PSI in sample difference detection using data 
with a sample size similar to general healthcare research 
using big data.

Conclusions
Sample representativeness is a key determinant of the 
generalizability and applicability of study findings. In 
this study, we examined the use of PSI to capture differ-
ences in large samples and compared its results to the 
traditional statistics. Our findings suggest that PSI can be 
used to examine sample differences in healthcare studies 
leveraging big data. Further research is needed to com-
pare the PSI to other sample representativeness metrics 
and correlate their results to enable comparable data. 
Further implementation allowing the use of aggregated 
data for PSI calculation will enable research teams to use 
the metric using aggregated population-based datasets.
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