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Abstract

Background The aim of this study is to develop a method we call “cost mining”to unravel cost variation and identify
cost drivers by modelling integrated patient pathways from primary care to the palliative care setting. This approach
fills an urgent need to quantify financial strains on healthcare systems, particularly for colorectal cancer, which

is the most expensive cancer in Australia, and the second most expensive cancer globally.

Methods We developed and published a customized algorithm that dynamically estimates and visualizes the mean,
minimum, and total costs of care at the patient level, by aggregating activity-based healthcare system costs (e.g.
DRGs) across integrated pathways. This extends traditional process mining approaches by making the resulting pro-
cess maps actionable and informative and by displaying cost estimates. We demonstrate the method by constructing
a unique dataset of colorectal cancer pathways in Victoria, Australia, using records of primary care, diagnosis, hospital
admission and chemotherapy, medication, health system costs, and life events to create integrated colorectal cancer
patient pathways from 2012 to 2020.

Results Cost mining with the algorithm enabled exploration of costly integrated pathways, i.e. drilling down in high-
cost pathways to discover cost drivers, for 4246 cases covering approx. 4 million care activities. Per-patient CRC
pathway costs ranged from $10,379 AUD to $41,643 AUD, and varied significantly per cancer stage such that e.q.
chemotherapy costs in one cancer stage are different to the same chemotherapy regimen in a different stage. Admit-
ted episodes were most costly, representing 93.34% or $56.6 M AUD of the total healthcare system costs covered

in the sample.

Conclusions Cost mining can supplement other health economic methods by providing contextual, sequence
and timing-related information depicting how patients flow through complex care pathways. This approach can
also facilitate health economic studies informing decision-makers on where to target care improvement or to evalu-
ate the consequences of new treatments or care delivery interventions. Through this study we provide an approach
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for hospitals and policymakers to leverage their health data infrastructure and to enable real time patient level cost

mining.

Keywords Costs of care, Colorectal cancer, Patient pathways, Process mining, Value-based healthcare

Introduction

Recent years have witnessed significant advancements in
complex care, particularly in oncology, with rapid intro-
duction of innovative technologies and therapies. This
has led to better patient outcomes but has also resulted in
higher patient-specific costs due to increased complexity
and specialization of care delivery [1, 2]. Recent estimates
suggest that the total global economic burden of cancers
will reach $25.2 trillion during the period of 2020 to 2050
[3]. This rapidly growing cost of care is unsustainable and
considered one of the major challenges for health sys-
tems worldwide [2]. Value-based healthcare (VBHC) is
a lens through which this issue is increasingly discussed;
broadly speaking, VBHC suggests that healthcare must
be organized and incentivized in a way that prioritizes
outcomes and minimizes resource utilization and costs,
per patient, across the integrated treatment pathway
from screening or initial consultation to outcome [4].
While patient preferences and outcomes are increas-
ingly studied, estimating costs at the patient level remains
challenging [4], especially in complex care settings with
extended patient journeys or repetitive treatment cycles
with regular diagnostic work-ups, such as colorectal can-
cers (CRC). As new treatment variations and alternatives
are introduced, and protocols become more tailored to
individual patients, these pathways increasingly resemble
interdependent webs which complicates decision-making
[5-8].

Model-based health economic studies often use popu-
lation-level aggregate costs and rely on ad-hoc explora-
tion of variability or cost drivers within these aggregates,
usually based on patient characteristics like age [9-12].
While suitable for evaluating interventions, this approach
is less accurate for hospital-level capacity planning and
process improvement [13-18]. Additionally, healthcare
professionals report a lack of tools to easily identify and
target specific cost drivers relevant to their local con-
text [10, 18—20]. Determining cost drivers across patient
pathways is a significant research challenge [3, 21-23],
as decisions made in one treatment impact subsequent
treatments’ costs and outcomes, prompting calls for bet-
ter tools to systematically explore variation across inte-
grated pathways [5, 8, 18, 24-27]. Granular cost data
spanning the full patient cycle, from primary care to end-
of-life care, are difficult to generate [4, 28, 29], and deter-
mining variation in healthcare delivery characteristics
remains a core challenge.

To address these challenges, this study presents
process mining with cost estimation, which we call
“cost mining, as an approach to uncover high-cost
pathways and specific cost drivers using real-world
patient-level data. Process mining (PM) can comple-
ment existing health economic approaches [13, 30],
by enabling patient-level cost estimates in models and
generating visuals that capture patient-level variation
and treatment interdependencies. PM uses low-level
event data from electronic health records (EHR), such
as individual consultations, procedures, and medica-
tion prescriptions, with timestamps to derive process
models and discover real-world patient pathways [31].
It presents granular data in steps or phases, providing
descriptive insights into patient movement through
systems and resource consumption [31, 32]. As of early
2022, approximately 263 healthcare PM studies have
been published [30], exploring care trajectories in acute
ischemic stroke, sepsis [33], chronic diseases [34, 35],
cancer [36—38], primary care [32], and COVID-19 cases
[28]. This work has concluded that PM is powerful, but
should include cost or resource data to make it action-
able, which is what we aim to contribute in this study.

Costs have received limited attention in prior PM and
VBHC studies. PM has been used to assess resource
requirements and queuing improvements in emergency
departments [14, 15, 18, 39], but its use in cancer care
is limited due to the complexity of tracing integrated
care episodes and the chronic nature of cancer [21,
22]. To support case-mix group evaluations and hos-
pital capacity planning, additional data and analyses
are needed with PM [14-16]. Cost mining can iden-
tify patient subgroups incurring additional costs due
to factors like cancer stage, treatment timing, or pro-
tocol changes. It complements existing health eco-
nomic methods by providing contextual information
on patient pathways and the timing of treatment deci-
sions (e.g., early-stage vs. late-stage chemotherapy).
This information can serve as KPIs or benchmarks for
healthcare practitioners, policymakers, and research-
ers, extending PM’s usefulness in health services [30].
Given that only nine of 236 recently reviewed studies
employed cost estimation [18, 24, 25, 27, 30], the algo-
rithm we have developed particularly enhances PM’s
utility for studying the cost drivers in CRC and other
complex diseases in scope for VBHC initiatives.
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To develop and illustrate cost mining, we created a
unique linked dataset to cover the integrated colorec-
tal cancer (CRC) pathway in Victoria, Australia, which
serves as an illustrative case study throughout the
paper. Colorectal cancers, which have long trajectories
beginning in primary care, are the most costly can-
cers in Australia [22] and the second most costly can-
cer globally [3], making CRC a highly relevant research
context for the study of healthcare costs.

Stage 1: Raw data
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Methods

In this section we describe the data requirements for cost
mining integrated pathways. For a detailed description
of PM techniques, we refer the reader to Munoz-Gama
et al. (2023) [31] and van der Aalst (2016) [40]. In this
study, we combined data from six Australian databases,
detailed in appendix A and summarized in Fig. 1. The
study received ethical approval by the Royal Melbourne
Hospital Ethics Board through the BioGrid application
(202,003/8) prior to starting.

Identify and procure relevant raw data to capture patient history

Hospital
data on
admitted

General
practitioner
data

Specialist
diagnostic
data

episodes

Life event
data from
national

Activity
level cost
estimates

Prescription
medication
data

registries

Stage 2: Data preparation

v

Combine into longitudinal database covering patient history

patient_IDl |treatment_ID| | DRG_ID | |

USI_ID

Stage 3: Building the event log

A

y

Build chronological event log with cost information

case identifier date activity activity state
patient_ID DD-MM-YYYY activity_ID status
001 01-01-2023 A start
001 05-01-2023 A complete
001 06 B start

event and patient characteristics, incl. cost (can repeat)

Other

cost
characteristics

resource age category

GP_O1

40-49

$20 GP_0O

$30 Hospital_A

Stage 4: Cost mining

Conduct cost mining analysis

C
Trace 01 A B\ ¢ 3 L
(208) (308) /' (1008) / (155)
o A B F E start —» A 8 E —3 end
Taeo, oA > B ks e 22508 >O 2508 158
cost aggregation per activity mean, max or min cost of
and case activity, across cases ODS

|

Stage 5: Drilling down to explore variation

v

2. What patient pathways are the costliest?

Answer exploratory research questions
1. What are the mean, min, max, or total costs of care per activity or patient pathway?

3. What are the characteristics of the patients on the costliest pathways?

Futher
analysis (e.g.

simulation)

Fig. 1 Explanatory diagram summarizing the flow of raw data into research results in the proposed method using PM with cost aggregation
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PM structures event-level data chronologically into
so called process models, which depict a linear, visual-
ized flow of patients through a series of processes [32,
40]. Processes can have several states and attributes (e.g.
a blood test can be complete or incomplete, etc.). PM
describes as-is states of pathways using retrospective
data; it summarizes and visualizes real world pathways,
and does not make any predictions, assumptions, or
imputations [29, 32, 34, 41].

Stage 1: raw data

The method requires activity and cost information of a
patient spanning the entire treatment history (screening,
diagnosis, treatment, follow-up), and these activity data
need to include dates or timestamps. Patients don’t need
to complete their treatment to be included in the analy-
sis, as costs are estimated at the activity level, including
patients still undergoing treatments is a key strength of
this method. However, for group comparisons or total
cost estimations, it is crucial to have treatment start dates
to filter out incomplete cases and avoid downward bias
in total pathway cost estimates [8]. Costs can be esti-
mated using activity-based microcosting approaches [5,
8], or through reimbursement data such as DRGs [4, 12,
22]. The Australian reimbursements are granular, mean-
ing that this method will produce cost statistics that
capture inter-dependencies across integrated pathways.
For example, the chemotherapy stage consists of several
activity-based reimbursements, which means that the
cost statistics will reflect differences between patients, as
e.g. a patient requiring chemotherapy at a later stage of
CRC may require more consultations, treatments, or reg-
imens than a patient undergoing chemotherapy at a dif-
ferent CRC stage. The data requirements are summarized
in the first stage of Fig. 1.

Stage 2: data preparation

The data need to be linked into a longitudinal database
covering the integrated patient pathways and associated
costs per activity. This implies that each data source iden-
tified in stage 1 of Fig. 1 needs to contain unique iden-
tifiers, e.g., anonymized patient identifiers. Further, it
implies that data requirements are significant, because
data linkage results in the exclusion of incomplete cases.
In the CRC case shown in Fig. 2, this resulted in a set of
4246 patient records covering approximately 4 million
activities (appendix A). Before conducting the analysis, it
is important to assess if combining the data introduced
bias through data loss, by comparing patient character-
istics across data sources and the final set (appendix B).
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Stage 3: building the event log

Next, data need to be formatted in an event or activity
log, which is subject to the requirements summarized in
Table 1.

An activity log contains one row per activity, with start
and end times, and therefore only supports additional
data at the unit of analysis of an activity as shown in
Fig. 3. On the other hand, event logs offer more flexibil-
ity because they contain two or more rows per activity, as
start and end points of activities are considered individ-
ual events [30, 40]. As such, it is possible to model data
in which e.g. different resources are executing different
elements of a single activity. A practical example of this
would be a patient starting a medication-based treatment
at a specialist care facility but completing it weeks later
whilst being treated at a hospital for acute complications.
For the purpose of cost mining, an event log is favora-
ble to an activity log, because some healthcare activities
can take weeks or months (e.g. medication treatment
regimens), and others minutes (e.g. phone consulta-
tion) [30]. The largest challenge in PM in the healthcare
sector is related to the inconsistent nature of the data
required [30]. It can be challenging to link and combine
data sources to cover integrated pathways in settings
like CRC, due to the length or dispersion of treatments.
Possible solutions for this include using heuristics to
estimate process end times if these are unknown [8], or
assuming that the start date of a specific activity signifies
the end date of the prior one. In our CRC case, we did
not make assumptions or imputations, because we con-
structed entire integrated care pathways from primary
care up to outcomes like survivorship.

The event log should be built in software optimized
for efficient coding, recoding, and reformatting of large
data sets. We used R with the tidyverse library, which is
freely available. The required event log format is shown
in Fig. 3 exhibit A. Note that row 1 in the activity log
contains the information from rows 1-2 in the event
log. Further, note that the activity log in exhibit B loses
some of the information contained in the event log (rows
3-4). The activity log cannot support data pertaining to
an activity instance (start, end). Therefore, it summarizes
the costs of activity B ($30) whereas the event log can
show when and where these costs are incurred ($10 at
start, $20 at completion).

Once the event (or activity) log is built as presented in
the methods section (stage 1-3), the cost mining analy-
sis can be conducted. Modern commercial PM software
packages' support the display of common statistics, such

! https://www.fluxicon.com/disco (commercial).
https://www.celonis.com (commercial).
https://www.apromore.org (commercial).
https://www.promtools.org (free).
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All CRC in ACCORD (7 734)
Peter MacCallum (218)
Royal Melbourne (2795)
Western Health (4721)

ACCORD
subset (7 533)

‘@

Remove duplicates (201)

Linked subset (4 336)

Linked subset
(4 336)

Remove cases in TRACC but not

v

d VAED/NPS (90)

Linked subset for analysis (4 246)

Fig. 2 Patient record selection for the illustrative case study of colorectal cancer, resulting in a dataset of 4,246 linked unique cases with cost data
at the activity or event level, covering approx. 4 million activities. For details, please refer to appendix A. Note: ACCORD: Australian Comprehensive
Cancer Outcomes and Research Database; MBS: Medicare Benefits Schedule; PBS: Pharmaceutical Benefit Scheme; TRACC: Treatment of Recurrent
and Advanced Colorectal Cancer; VAED: Victorian Admitted Episodes Dataset

Table 1 Event log requirements, based on De Roock and Martin (2022) [30]

Element

Description

Timestamps
Case identifier
Activity identifier

Event status
Cost of event or activity
Additional data

Dates, timestamps

A case identification code that is consistent and unique, e.g. one code per patient

An activity identification code that is consistent and unique. This requires data cleaning
and preparation to avoid cases where identical activities or events are coded inconsistently
(e.g."Chemo”vs. “Chemotherapy”)

Activity status information, e.g. started, complete, in progress associated with the timestamps

Cost estimates, stemming from e.g., diagnosis-related group codes or microcosting

E.g. patient characteristics, case-mix group

Footnote 1 (¢ontinued)

https://pm4py.org (free for use in Python).
https://www.bupar.net (free library for use in R).

as the median number of cases per activity, but do not
support customized statistics such as cost information.
For this reason, we wrote a customized cost mining algo-
rithm in Python, which is used in the following analyses
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Exhibit A: Event log Exhibit B: Activity log
patient_ID date activity_ID status cost patient_ID date start date end activity_ID cost
1 001 01-01-2023 A start 1 001 01-01-2023 05-01-2023 A $20
2 001 05-01-2023 A complete $20 2 001 06-01-2023 09-01-2023 B $30
3 001 06-01-2023 B start $10
4 001 09-01-2023 B complete $20
L J L J

Fig. 3 Minimum requirements of an event log or an activity log for PM with cost aggregation

(available
decoration.)

https://github.com/chsr-uom/PM_token_

Results

Stage 4: cost mining

The analysis starts with executing PM on the entire event
log built in stage 3 using an inductive miner algorithm.
It is particularly suitable to healthcare processes, because
it produces inspectable process maps with a large degree
simplification [32, 42—44]. Using the code we provide, the
resulting process map displays cost statistics (mean, min-
imum, maximum, total) for each activity displayed in the
form of a ‘decoration’ [45, 46], i.e. a label on the process
map. For any given process model generated, the visual
output provides the summary statistic of the costs per
activity, based on the number of cases that have passed
through the activity in that analysis. Similarly, it produces
a summary statistic of the total costs of care per trace, i.e.,
per individual patient trajectory included. At this point,
it can be useful to restrict the sample to cases that are
completed to avoid under-estimating total pathway costs,
by e.g. restricting the data to cases with an observed
life event (e.g., survivorship, death, no treatment within
2 years). The cost mining code is described in pseudoc-
ode in appendix C. Figure 4 summarizes how the algo-
rithm aggregates cost data; it draws on the traces derived
from PM, which are sequences of events observed per
case (patient) in the dataset. In simple terms, for each
process map generated, the algorithm aligns all traces of
the current model to calculate a statistic of the costs of
each activity. In Fig. 4 exhibit B, both instances of ‘activ-
ity A’ are compared and translated into a mean (in this
case, the average of $20 and $25 is $22.50). To do so,
the algorithm accounts for all patients that have under-
gone activity A, across all traces (sequences of activities).
Because, for example, only a single instance of activity C
is observed in this hypothetical example, the label returns
the value of $100 attached to activity C. In a final step,
the code attaches the generated statistic value to the pro-
cess map as a ‘decoration’ label [45, 46].

Stage 5: drilling down to explore variation

The generated process model will display pathways,
which warrant further exploration in terms of e.g. case-
mix groups, diagnoses, or indications, which we term
‘drilling down’ into the data to further understand rare,
desirable, or undesirable pathways and cost drivers [30,
32, 40]. This allows us to quantify mean and range per
patient group as well as to determine subgroups based on
certain cost outcomes (e.g. most expensive).

We illustrate the method in Fig. 5 using the CRC case.
We were able to identify crucial decision points (after
which pathways were significantly different in complex-
ity and costs), pinpoint costly processes, and make case-
mix comparisons across groups (sex, age group, tumour
location, tumour stage, CRC-type, patient’s rurality, and
indigenous status; see right side of Fig. 5). In CRC, we
found that the average costs of care ranged from $10,379
AUD to $41,643 AUD per patient (Fig. 5 panel H) and
differed significantly per stage of treatment.

Drilling down in our data revealed that colon cancer
was associated with significantly greater costs across the
entire care continuum than rectal cancer, and admissions
and chemotherapy were by far the most expensive ele-
ments of treatment (Fig. 5, panels C, D). Admitted epi-
sodes (n=1,965 patients) cost a total of $56.6 M AUD
(93.34% of total costs covered by the data, $ 60,63 M
AUD). In comparison, the total cost of chemotherapy
drug treatments (n=218 patients) was 6.62% of total
costs. GP visits, diagnostic testing, and prescriptions
made up less than 0.01% of the total costs. Our results
reveal that treatment-related factors, namely cancer
stage, significantly related to costs (Fig. 5, panel H).

When drilling down into the chemotherapy treat-
ments, treatment with a specific regimen (Mfolfox 6;
Fig. 5 panel D) was extremely costly, at an average cost
of $35 K AUD per patient. However, these costs sig-
nificantly varied across the different cancer stages, with
stage C cancer patients incurring much higher costs
associated with the Mfolfox 6 chemotherapy regimen
than other patients, which warrants future qualitative
and quantitative research. In this way, this exploratory
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Stage 4: PM with cost aggregation
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Exhibit A: Example event log with cost information, and trace
patient_ID DD-MM-YYYY activity_ID status cost
01-01-2023 A start
05-01-2023 A complete $20
06-01-2023 B start
06-01-2023 B complete $30
001 05-01-2023 C start
06-01-2023 C complete $100
08-01-2023 E start
09-01-2023 E complete $15
11-01-2023 A start
12-01-2023 A complete $25
14-01-2023 B start
20-01-2023 B complete $5
002 24-01-2023 F start
26-01-2023 F complete $10
26-01-2023 E start
28-01-2023 H complete $15
~a T A b -,
P Trace o4 (208) (3%3) ’ /”(10%5) (155)
. A B E E
P Tacs o @58) / (58)  (108) / (15%)
Traces are sequences of activities per case (patient)
\

/

\.

~
Exhibit B: Derived process model and cost aggregation algorithm

Derived process model A

start

Trace

alignment 1
Trace

alignment 2

Model

Possibilities

Current
Aggregate
Decorations

A *sf‘fg

start > 50 > 505\t
D
0s

Decorations display mean, min, max or median cost of activity,
across traces

/

Fig. 4 Explanatory diagram depicting how the aggregation algorithm uses the data provided in the event log (exhibit A), transforms it into traces
with cost information, and then derives cost statistics by aligning traces to compute mean, median, minimum, or maximum costs (exhibit B)

technique can account for the temporal nature of care,
as the costs of e.g. receiving chemotherapy during late-
stage cancer are higher than early-stage. In future, if
protocol changes are introduced to e.g. circumvent
the use of Mfolfox 6 during stage C CRC, the cost and
duration impact of this change can be traced using cost
mining.

Discussion

In this methodological paper, we draw on recent PM
work in healthcare settings [13, 18, 25, 31, 41, 46] to
develop and trial a method to support VBHC. Because
cost mining aggregates cost information across entire
patient journeys using real life data, this method trans-
lates large volumes of data into useful and practical
information with which care can be made more effi-
cient, accessible, and sustainable. In doing so, we have
answered several recent calls for research [47-50] and
built on recent methodological work calling for PM
with financial KPIs [30].

Applications for cost mining

This method is relevant to achieving process efficiency,
cost reduction, improved resource allocation, continuous
process improvement, and data driven medical decision-
making to ensure financial sustainability in a landscape of
increasing complexity.

At the international level, this method could facilitate
financial benchmarking across different standards of
care and healthcare systems by comparing large patient
cohorts in terms of patient pathways, to identify high-
cost or long-duration pathways to target with interven-
tions. Thus, it would supplement ongoing analyses, or
large retrospective or prospective cohort studies, by
providing patient flow information alongside common
health economic analyses [50].

At the national level, this method can aid researchers
and policy-makers in tracing and evaluating increasing
healthcare delivery variation, for instance in response
to medical protocol changes over time, technological
advancements in medicine, and digitalization of health-
care service delivery. This is particularly relevant in
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AUD 15,000 AUD 25,007
AUD 75,000 AUD 21,025
AUD 45,000 AUD 11,227
/AUD 100,000 AUD 23,295
AUD 20,000 AUD 9,887

J

Fig. 5 lllustrative results gained from PM with cost aggregation for CRC pathway, with particular focus on chemotherapy, to show how the method
supports drilling down'to understand where high costs are being incurred, for which patient groups, and which treatment modalities

countries that feature strong or increasing care concen-
tration, such as the Netherlands [51]. Further, cost min-
ing could uncover the long-term consequences of shifting
standards of care, by mapping and aggregating the costs
associated with specific procedural guidelines by com-
paring patient groups before and after policy changes,
or across locations. Even in less fragmented systems
(e.g., US) where patient-level data is more integrated,
cost mining still holds relevance. Although one could
directly determine costs from patient-level data, cost
mining offers the ability to uncover underlying patterns,

sequences, and relationships within the care process,
which can complement traditional microcosting studies
by providing contextual information, and by exploring
how sequences or timing impact costs, outcomes, and
durations.

At the clinical level, it can reveal whether specific
patient groups are consuming disproportionately more
care than others, as we have demonstrated in our CRC
case, or face significantly longer or more invasive trajec-
tories. This may also enable assessment of care equity by,
for example, comparing advantaged to disadvantaged or
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underrepresented patient groups. By exploring utilization
patterns in a systematic way using cost mining, future
research could identify whether disadvantaged groups
are consuming more or less care than their counterparts,
which opens up new avenues for prevention and inter-
vention strategies relating to health equity. Moreover, this
information would, in turn, provide valuable insights for
future health technology assessments or cost-effective-
ness assessments, enabling them to estimate the process
and cost impact of e-health technologies from financial,
sustainability, and equity perspectives [52]. Further, this
method could be used to explore the economic impact
of prevention, early diagnosis [21, 22, 53] and excessive
routine diagnostics [54] or prescriptions [55] by assessing
and comparing integrated pathways longitudinally.

Costs of CRC in Australia

The contribution of the present study is that we find that
cancer stages relate to costs, and that costs of specific ele-
ments of CRC care are dependent on the relative timing
in which they are administered during a patient’s inte-
grated pathway. Previous studies in New Zealand [56],
England [57], the US [58], Europe [59], and Australia [21,
22], reported on costs of care for CRC cases in relation
to control variables like age and sex. Building on this,
we report treatment-specific factors like cancer stage
as explanatory factors of cost variation. Only two prior
studies found CRC costs to relate to cancer stage [22,
57]. Our results extend these findings by showing that
stages B and C have the highest total costs, and stages
C and D have the highest mean cost per patient, which
suggests that treatment-related factors and timing influ-
ence costs. Whilst prior work focused on treatments [21,
58], we included primary care and life events and cap-
tured the integrated pathway, covering all treatments and
events related to CRC. Importantly, our results show that
chemotherapy costs depend on the cancer stage, with
specific patient groups requiring high-cost regimens
like Mfolfox 6 at specific stages (e.g., stage C) relating to
high per-patient costs. These findings extend recent work
and illustrate the benefits of mapping integrated patient
pathways with data from multiple providers (e.g., GPs)
to explore costs in relation to cancer stage and timing
of treatments. By incorporating the entire pathway, we
show that the total healthcare burden of CRC in Australia
is predominantly related to inpatient episodes, but that
per-patient costs within chemotherapy vary and relate to
specific regimes in specific cancer stages. Future research
should utilize cost mining to investigate whether preven-
tative interventions or earlier screening and diagnosis
lead to quicker patient pathways or comparatively lower-
cost inpatient and chemotherapy episodes, given the sig-
nificant correlation between cancer stage at the time of
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treatment and costs. Beyond CRC, future studies could
expand on our algorithm to develop routine cost mining
evaluations in other costly contexts, complementing and
informing traditional economic and qualitative methods.

Limitations of cost mining

Cost mining has limitations inherent to PM and the use
of historical patient data, namely significant data require-
ments, descriptive nature, and a lack of predictive power.
The method primarily visualizes as-is states using retro-
spective data, describing costs faced by patients who have
completed (parts of) their care trajectory. This may not
reflect current costs for treatments with recent techno-
logical developments, and the analysis should be repeated
periodically to discover new pathways as they occur.

Due to the descriptive nature of this analysis, the
method requires significant volumes of data to be rep-
resentative, and results must be interpreted cautiously.
The method can uncover high-cost pathways and identify
paths or patient groups that completed unusually costly
pathways. However, the method cannot be used to judge
whether medical decisions were cost-effective not, and
the user must assume that pathways were chosen out of
medical necessity. The resulting visualizations should
therefore be used to uncover cost drivers to inform
VBHC projects, or to identify patient groups that face
unusually costly or lengthy treatments, and should be
used in tandem with methods like micro costing or cost-
effectiveness analyses [8], and qualitative approaches
like realist evaluations that uncover situational or causal
mechanisms [55]. Low patient numbers in specific
branches of pathways are not problematic if the patient
number is representative of the entire study population.
Because the analysis is descriptive, it is sensitive to omis-
sions, so excluded cost or activity data will result in an
underestimation of cost statistics. Lastly, some contexts
may be difficult to model with PM. Systems with free
choice of GP and healthcare provider are challenging due
to fragmented patient data across providers, necessitat-
ing manual linkage. In contrast, systems with seamless
electronic health records, like those in the Netherlands,
are easier to model as they capture all general and spe-
cialist care regardless of location.

Conclusion and future research

The cost mining method identified inpatient and chem-
otherapy episodes as particularly costly in Australian
CRC care, driven by cancer stage, accounting for 99%
of the $60.63 M AUD economic burden on the Austral-
ian health system (2012-2020). Our analysis under-
scores the benefits of linked registries and cost mining
for assessing healthcare costs across integrated pathways
to inform VBHC projects. Future research could extend
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this method, and address some of its limitations, using
predictive PM utilizing machine learning [60], to pro-
duce process maps that are not only actionable but also
predictive. Additionally, our method relies on static cost
estimates per activity using DRG data, whereas future
work could develop algorithms that allow resource usage
to vary per activity per patient, using cost equations [8].
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