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Abstract
Background  Autoimmune disorders have primary manifestations such as joint pain and bowel inflammation but can 
also have secondary manifestations such as non-infectious uveitis (NIU). A regulatory health authority raised concerns 
after receiving spontaneous reports for NIU following exposure to Remicade®, a biologic therapy with multiple 
indications for which alternative therapies are available. In assessment of this clinical question, we applied validity 
diagnostics to support observational data causal inferences.

Methods  We assessed the risk of NIU among patients exposed to Remicade® compared to alternative biologics. Five 
databases, four study populations, and four analysis methodologies were used to estimate 80 potential treatment 
effects, with 20 pre-specified as primary. The study populations included inflammatory bowel conditions Crohn’s 
disease or ulcerative colitis (IBD), ankylosing spondylitis (AS), psoriatic conditions plaque psoriasis or psoriatic arthritis 
(PsO/PsA), and rheumatoid arthritis (RA). We conducted four analysis strategies intended to address limitations 
of causal estimation using observational data and applied four diagnostics with pre-specified quantitative rules 
to evaluate threats to validity from observed and unobserved confounding. We also qualitatively assessed post-
propensity score matching representativeness, and bias susceptibility from outcome misclassification. We fit Cox 
proportional-hazards models, conditioned on propensity score-matched sets, to estimate the on-treatment risk of NIU 
among Remicade® initiators versus alternatives. Estimates from analyses that passed four validity tests were assessed.

Results  Of the 80 total analyses and the 20 analyses pre-specified as primary, 24% and 20% passed diagnostics, 
respectively. Among patients with IBD, we observed no evidence of increased risk for NIU relative to other similarly 
indicated biologics (pooled hazard ratio [HR] 0.75, 95% confidence interval [CI] 0.38–1.40). For patients with RA, we 
observed no increased risk relative to similarly indicated biologics, although results were imprecise (HR: 1.23, 95% CI 
0.14–10.47).
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Introduction
Randomized controlled trials (RCT) are the gold stan-
dard for estimating causal effects between drug expo-
sures and health outcomes [1–3]. In an ideal, perfectly 
specified and conducted RCT, the treatment effect is 
an unbiased estimate of the effect of treatment on the 
outcome. Randomization ensures balance on baseline 
observed and unobserved factors that if unbalanced 
could confound effect estimates [4]. Additionally, RCTs 
generally evaluate a well-defined study population whose 
subjects must meet strict inclusion/exclusion criteria 
applied by trained investigators at enrollment, which 
selects the subject sample to represent the target popula-
tion of interest. Further, study outcome case adjudication 
by trained clinicians reduces or eliminates bias from out-
come misclassification.

RCTs are resource intensive and slow in response to 
urgently needed evidence and medical innovation [3], 
although the RECOVERY trial demonstrated that rapid 
RCT execution is possible [5, 6]. They demonstrate 
strong internal validity through rigorous design and strict 
inclusion/exclusion criteria, but the tradeoff is reduced 
external validity and generalizability [7]. Moreover, RCTs 
are often under powered or of insufficient follow-up time 
to detect uncommon or longer-term adverse events [8]. 
Lastly, ethical considerations exclude vulnerable popula-
tions from participation [9–11], leaving evidence gaps for 
patients in need of informed treatment decisions.

So, out of necessity is an opportunity for researchers 
to attempt to make valid causal inferences from observa-
tional data. Following the US 21st Century Cures Act of 
2016 [12], real-world evidence (RWE) derived from the 
analysis of real-world data (RWD) has been increasingly 
called upon by regulatory authorities for evidentiary 
needs to complement what is known from clinical trials 
[13–16].

Despite the promise of using RWE to inform clinical, 
policy, and regulatory decisions when RCT evidence is 
unavailable, causal inferences made from RWD have his-
torically been inconsistent or contradictory. For exam-
ple, in evaluating whether bisphosphonates cause an 
increased risk of esophageal cancer among patients in the 
Clinical Practice Research Datalink database, two inves-
tigator teams reported and published conflicting results. 
A comparative cohort study reported no increased risk 

[17] whereas a nested case-control study reported a 30% 
increased risk [18]. Such inconsistencies compromise the 
reliability of and confidence in causal inferences made 
from RWD1.

Nonetheless, recent advances have been promising. 
Contrary to current guidelines, observational cohort 
studies found chlorthalidone use was not associated with 
cardiovascular benefit compared to hydrochlorothiazide 
[19, 20] and these accurately predicted a subsequently 
reported RCT assessing the same question [21]. Further, 
the RCT-DUPLICATE initiative demonstrated high con-
cordance between results from a selected sample of RCTs 
and corresponding observational study results intended 
for replication [22]. These advances support continuing 
health authority commitment to ongoing RWD and RWE 
policy development [23].

Despite these advances, threats to the validity of causal 
estimation using observational data persist. Inherent to 
all observational studies intended to draw causal infer-
ences are risks of bias from observed and unobserved 
confounding, measurement error such as outcome mis-
classification, and poor sample representativeness of the 
target population. In this study, we illustrate the use of 
diagnostics to assess whether valid causal inferences can 
be made to address a health authority query on a specific 
safety concern for a biologic therapy with multiple indi-
cations for which many alternative therapies are available. 
We addressed this concern by conducting an observa-
tional, comparative cohort safety study intended to esti-
mate the causal effect on Remicade® on non-infectious 
uveitis (NIU). To address these concerns in this work, we 
identified, evaluated, and reduced threats to the validity 
of our study causal inferences using a set of diagnostics.

Objectives
We investigated whether exposure to Remicade® caused 
an increased risk of NIU compared to other biologics 
within indication-specific study populations across five 
observational databases. Our analysis underwent four 
validity diagnostics, supplemented by two qualitative 

1  Note that in most uses related to research data, the term ‘real-world’ is 
interchangeable with the term ‘observational’. For example, the terms RWD 
and RWE are equivalent to observational data and observational evidence, 
respectively. The term ‘observational’ will be used for the remainder of this 
document.

Conclusions  We applied validity diagnostics on a heterogenous, observational setting to answer a specific research 
question. The results indicated that safety effect estimates from many analyses would be inappropriate to interpret 
as causal, given the data available and methods employed. Validity diagnostics should always be used to determine if 
the design and analysis are of sufficient quality to support causal inferences. The clinical implications of our findings 
on IBD suggests that, if an increased risk exists, it is unlikely to be greater than 40% given the 1.40 upper bound of the 
pooled HR confidence interval.

Keywords  Observational study, Causal inference, Autoimmune disorders, Biologic agents, Non-infectious uveitis
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diagnostics. First, we present the clinical study example. 
Secondly, we detail the validity diagnostics employed to 
evaluate the analysis’s potential for supporting causal 
inference. Thirdly, these diagnostics were applied to our 
observational clinical study. This study showcases how 
validity diagnostics enhance the credibility of evidence 
for comparative effect estimation derived from observa-
tional data.

Methods
We designed and conducted an active comparator, new 
user, PS-matched cohort study [24, 25] to estimate the 
risk of NIU among new users of Remicade®. The pre-
specified protocol and complete source code for this 
study are available at ​h​t​t​​p​s​:​/​​/​g​i​​t​h​​u​b​.​​c​o​m​/​​o​h​d​​s​i​​-​s​t​u​d​i​e​s​/​
U​v​e​i​t​i​s​S​a​f​e​t​y​E​s​t​i​m​a​t​i​o​n​/​t​r​e​e​/​m​a​s​t​e​r​/​D​o​c​u​m​e​n​t​s​​​​ and ​h​t​
t​​p​s​:​/​​/​g​i​​t​h​​u​b​.​c​o​m​/​o​h​d​s​i​-​s​t​u​d​i​e​s​/​U​v​e​i​t​i​s​S​a​f​e​t​y​E​s​t​i​m​a​t​i​o​n​
/​​​​​. Our observational study adhered to principles of tar-
get trial emulation [26, 27] and standardized, compre-
hensive analyses intended to reduce observational study 
biases [28]. This was a multi-database study that allows 
for analysis of diverse patient populations, rare exposures 
and outcomes, and supports replicability and generaliz-
ability [29]. Further, evidence from multi-database stud-
ies is strengthened by assessing results consistency across 
databases.

Data sources
We conducted the study in five databases, three admin-
istrative claims and two electronic health record (EHR) 
databases, all from the United States (US). The claims 
databases included Merative™ MarketScan® Commercial 
Database (CCAE), Optum® de-Identified Clinformatics® 
Data Mart Database (Clinformatics®), IQVIA Pharmet-
rics Plus (Pharmetrics). The EHR databases included 
Optum® de-identified Electronic Health Record Data-
set (Optum® EHR) and IQVIA Ambulatory EMR (Amb 
EMR). These five US databases provide multiple perspec-
tives on the study populations given variation in popula-
tion composition and data capture process by database. 
Detailed database descriptions are available in Appendix 
1.

The databases were standardized in structure and con-
tent into the Observational Medical Outcomes Partner-
ship (OMOP) Common Data Model (CDM) [30, 31] 
which is maintained by the Observational Health Data 
Sciences and Informatics (OHDSI) community. This 
standardization allows the strictly consistent application 
of analytic routines across multiple, disparate databases 
that eliminates variability of cohort definitions, variable 
definitions, and analytic implementation.

Study populations
We assessed four non-mutually exclusive populations 
that are indicated for Remicade®: patients with inflam-
matory bowel conditions Crohn’s disease or ulcerative 
colitis (IBD), ankylosing spondylitis (AS), psoriatic con-
ditions plaque psoriasis or psoriatic arthritis (PsO/PsA), 
and rheumatoid arthritis (RA). The indication cohort 
definitions are fully specified in Appendix 2. Comprehen-
sive clinical characterization of the Remicade®-indicated 
study populations is available for review at an interactive 
web application at ​h​t​t​​p​s​:​/​​/​r​e​​s​u​​l​t​s​​.​o​h​d​​s​i​.​​o​r​​g​/​a​p​p​/​1​5​_​U​v​e​i​t​
i​s​S​a​f​e​t​y​I​n​d​i​c​a​t​i​o​n​s​​​​​.​​

Exposures
Within each study population we compared new users of 
a target exposure to new users of comparator exposures, 
that we refer to as the target and comparator cohorts. 
In the IBD, AS, PsO/PsA study populations, the target 
cohorts consisted of patients newly exposed to Remi-
cade®. In the RA study population, the target cohort 
consisted of patients newly exposed to Remicade® con-
currently exposed to methotrexate2 [32]. We compared 
the Remicade® target cohorts to the comparator cohorts, 
which differed by study population. We defined the com-
parator cohorts by new use of one of several alternative 
therapies indicated for IBD, AS, PsO/PsA, or RA and are 
listed in Table  1. The comparator exposures are biolog-
ics approved by the US Food and Drug Administration 
(FDA) for treatment of the indication study populations. 
Further, we excluded specific exposures for which there 
exists evidence of an increased or decreased risk for NIU. 
Specifically, we excluded etanercept and adalimumab 
from all comparator cohorts. Etanercept is known to 
increase the risk of uveitis and adalimumab is approved 
as a treatment for uveitis, as well as known to decrease 
the risk of uveitis [33–35].

Table 1 presents the comparator drugs used as the ref-
erence to which the target cohorts were compared for 
each indication. The target cohort population was limited 
to index exposures after the earliest date of approval by 
the FDA for the drugs included in the comparator cohort. 
Patients aged at least 18 years at the time of index and 
with at least 365 days of prior observation were eligible 
to participate in both the target and comparator cohorts. 
Additionally, target cohort patients were required to be 
naïve to biologics and infliximab biosimilars. All patients 
in the target and comparator cohorts were required to 
have no previous exposure to the medications listed as 
restrictions in Table 2. The detailed target and compara-
tor cohort definitions are in Appendix 2.

2  Remicade® should be administered in combination with methotrexate for 
the treatment of rheumatoid arthritis.

https://github.com/ohdsi-studies/UveitisSafetyEstimation/tree/master/Documents
https://github.com/ohdsi-studies/UveitisSafetyEstimation/tree/master/Documents
https://github.com/ohdsi-studies/UveitisSafetyEstimation/
https://github.com/ohdsi-studies/UveitisSafetyEstimation/
https://github.com/ohdsi-studies/UveitisSafetyEstimation/
https://results.ohdsi.org/app/15_UveitisSafetyIndications
https://results.ohdsi.org/app/15_UveitisSafetyIndications
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Remicade® dosage varies by indication3. Because our 
study is stratified by indication, it is unlikely Remicade® 
dosage variation will violate the consistency assumption 
for causality (i.e., each patient receives the same ver-
sion of treatment, or if multiple versions of a treatment 
do exist, then they have the same effect on the outcome) 
[36].

Outcomes
Phenotyping is the process by which the physiological, 
clinical description of a medical condition is translated 
into a computable algorithm designed to identify patients 
with the condition from an observational data source [37, 
38]. We applied a novel phenotyping [39] and outcome 
validation [40, 41] approach to developing and evaluating 
a phenotype algorithm for patients with NIU with intent 
to minimize misclassification. In studies that use ratio 
effect estimates such as ours, low outcome sensitivity is 
tolerable provided specificity is high to obtain an unbi-
ased estimate of treatment effect [42].

The novel outcome validation method we used builds 
a probabilistic reference standard rather than using 
deterministic medical chart adjudication. We fit a diag-
nostic predictive model that assigns case probabili-
ties to a large reference set against which we compared 
patients returned by our candidate outcome phenotype 
algorithms. Case probabilities are assigned to cases and 

3  Janssen Biotech, Inc. (2021). Remicade® (infliximab) [prescribing informa-
tion]. Food and Drug Administration ​h​t​t​​p​s​:​/​​/​w​w​​w​.​​a​c​c​​e​s​s​d​​a​t​a​​.​f​​d​a​.​​g​o​v​/​​d​r​u​​g​s​​
a​t​f​d​a​_​d​o​c​s​/​l​a​b​e​l​/​2​0​2​0​/​1​0​3​7​7​2​s​5​3​8​9​s​5​3​9​1​s​5​3​9​4​l​b​l​.​p​d​f​​​​​.​​

non-cases which allowed us to populate a full confusion 
matrix with the sums of conditional probabilities to com-
pute all misclassification metrics. Briefly, NIU is intra-
ocular inflammation, characterized by inflammation of 
the uvea in the absence of infection. We developed and 
evaluated three outcome definitions:

 	• Broad – first occurrence of a NIU code.
 	• Narrow – first occurrence of a NIU code with a 

second NIU code occurrence between 31 days and 
365 days relative to first occurrence.

 	• Primary – [first occurrence of a NIU code with 
a second NIU code occurrence between 31 days 
and 365 days relative to first occurrence] OR [first 
occurrence of a NIU code during an ophthalmology 
visit].

We ultimately used the primary definition in our com-
parative study given its high specificity and its favorable 
tradeoff between sensitivity and patient count compared 
to the other definitions. The full clinical description of 
NIU, the full code list and temporal logic specifications 
of our three candidate algorithms, and the results of our 
phenotyping development and evaluation are reported 
in Appendix 3. We comprehensively characterized our 
candidate NIU definitions which are available at ​h​t​t​​p​s​:​/​​
/​r​e​​s​u​​l​t​s​.​o​h​d​s​i​.​o​r​g​/​a​p​p​/​1​4​_​U​v​e​i​t​i​s​S​a​f​e​t​y​O​u​t​c​o​m​e​s​​​​​. ​M​i​s​
c​l​a​s​s​i​f​i​c​a​t​i​o​n errors for the primary outcome definition 
is reported in Table 3. It was on the basis of the pheno-
type evaluation results reported in Appendix 3 that we 
decided to use the primary NIU definition.

Table 1  Exposure comparisons by indication
Study population Target cohorts Target approval 

date
Comparator Cohorts Comparator with earli-

est approval date
Comparator 
with latest 
approval 
date

Irritable bowel dis-
eases (Crohn’s disease 
or ulcerative colitis)

Remicade® 8/24/1998 -golimumab
-certolizumab pegol
-ustekinumab
-vedolizumab

4/22/2008 (certolizum-
ab pegol)

9/26/2016 
(ustekinum-
ab)

Ankylosing 
Spondylitis

Remicade® 12/17/2004 -golimumab
-certolizumab pegol
-ixekizumab
-secukinumab

4/24/2009 (golimumab) 8/26/2019 
(ixekizumab)

Plaque psoriasis or 
psoriatic arthritis

Remicade® 5/13/2005 -golimumab
-certolizumab pegol
-guselkumab
-risankizumab
-tildrakizumab
-brodalumab
-ixekizumab
-secukinumab
-ustekinumab

4/24/2009 (golimumab) 4/23/2019 
(risanki-
zumab)

Rheumatoid arthritis Remicade® with concur-
rent methotrexate*

11/10/1999 -certolizumab pegol
-tocilizumab

5/13/2009 (certolizum-
ab pegol)

1/11/2010 
(tocilizumab)

* Remicade® should be administered in combination with methotrexate for the treatment of rheumatoid arthritis

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/103772s5389s5391s5394lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/103772s5389s5391s5394lbl.pdf
https://results.ohdsi.org/app/14_UveitisSafetyOutcomes
https://results.ohdsi.org/app/14_UveitisSafetyOutcomes
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Cohort study analysis specifications
We fit a large-scale PS model (LSPS) [43, 44] to ensure 
baseline balance on directly and indirectly measured 
covariates [45, 46] between the target and comparator 
cohorts. The PS was calculated for each patient as the 
predicted probability of target exposure status from an L1 

regularized logistic regression model, fit with a Laplace 
prior where the regularization hyperparameter was 
selected by optimizing the likelihood in a 10-fold cross 
validation with a starting variance of 0.01 and a tolerance 
of 2*10− 7 [47]. PS model input covariates included demo-
graphics, several risk indices, and code occurrence-based, 

Table 2  Exposure cohort restrictions and right-censoring criteria
Indication Cohort type Exposures Restrictions Right-censoring criteria*
Irritable bowel 
diseases (Crohn’s 
disease or ulcerative 
colitis)

Target Remicade® -TNFαi1 except infliximab
-infliximab biosimilars
-interleukin inhibitors2

-vedolizumab
-natalizumab

-adalimumab
-certolizumab pegol
-etanercept
-golimumab
-vedolizumab
-natalizumab
-interleukin inhibitors2

Irritable bowel 
diseases (Crohn’s 
disease or ulcerative 
colitis)

Comparator golimumab, certolizum-
ab pegol, ustekinumab, 
or vedolizumab

-TNFαi1 except certolizumab 
pegol and golimumab
-natalizumab

-infliximab
-adalimumab
-etanercept
-natalizumab
-interleukin inhibitors2 except 
ustekinumab

Ankylosing 
spondylitis

Target Remicade® -TNFαi1 except infliximab
-infliximab biosimilars
-interleukin inhibitors2

-adalimumab
-etanercept
-golimumab
-certolizumab pegol
-interleukin inhibitors2

Ankylosing 
spondylitis

Comparator golimumab, certolizum-
ab pegol, ixekizumab, or 
secukinumab

-TNFαi1 except certolizumab 
pegol and golimumab
-interleukin inhibitors2

-infliximab
-adalimumab
-etanercept
-interleukin inhibitors2 except ixekizumab 
and secukinumab

Plaque psoriasis or 
psoriatic arthritis

Target Remicade® -TNFαi1 except infliximab
-infliximab biosimilars
-interleukin inhibitors2

-adalimumab
-etanercept
-certolizumab pegol
-golimumab
-interleukin inhibitors2

Plaque psoriasis or 
psoriatic arthritis

Comparator golimumab, certolizum-
ab pegol, guselkumab, 
risankizumab, tildraki-
zumab, brodalumab, ix-
ekizumab, secukinumab, 
or ustekinumab

-infliximab
-adalimumab
-certolizumab pegol
-etanercept
-golimumab
-Interleukin inhibitors2

-infliximab
-adalimumab
-etanercept
-interleukin inhibitors2 except brodalum-
ab, guselkumab, ixekizumab, Risanki-
zumab, secukinumab, tildrakizumab and 
ustekinumab

Rheumatoid Arthritis Target Remicade® & 
Methotrexate*

-TNFαi1

-interleukin inhibitors2

-abatacept

-adalimumab
-certolizumab pegol
-etanercept
-golimumab
-abatacept
-interleukin inhibitors2

Rheumatoid Arthritis Comparator certolizumab pegol or 
tocilizumab

-TNFαi1

-interleukin inhibitors2

-abatacept

-infliximab
-adalimumab
-etanercept
-golimumab
-abatacept
-interleukin inhibitors2 except tocilizumab

Key: TNFαi: tumor necrosis factor α inhibitors

*Right-censoring criteria for all exposure cohorts includes exposure discontinuation and database discontinuation

1: adalimumab, certolizumab pegol, etanercept, golimumab, infliximab

2: anakinra, basiliximab, brodalumab, canakinumab, daclizumab, guselkumab, ixekizumab, rilonacept, risankizumab, sarilumab, sarilumab, secukinumab, siltuximab, 
tildrakizumab, tocilizumab, ustekinumab



Page 6 of 20Weaver et al. BMC Medical Research Methodology          (2024) 24:322 

baseline covariates for all medical diagnoses, drug expo-
sures, procedure occurrences, device use, and laboratory 
measurements (Appendix 4). Our primary PS adjustment 
strategy matched target to comparator patients using 
a 1:10 maximum variable ratio matching approach and 
used a greedy matching algorithm that applied a caliper 
of 0.2 of the standard deviation on the logit scale of the 
PS distribution [48].

We defined the ‘on-treatment’ time-at-risk (TAR) as 
the day after index until the end of a period of inferred 
persistent exposure. This allowed no more than a 90-day 
persistence window between successive exposures plus a 
90-day added surveillance to the last exposure date. We 
chose this persistence window based on recommended 
administration frequency [49] and an empirical assess-
ment of the durations between subsequent adminis-
trations for the drugs in three data sources included in 
this study. The days distribution between successive 
exposures showed that 75% of sequential administra-
tion records occurred within 90 days for all drugs in all 
databases except for ustekinumab in Optum EHR®. Fur-
ther, 90% of exposure records occurred within 90 days 
for most drugs except for ustekinumab, which may have 
time-at-risk right-censored early for approximately 
10% of patients. Appendix 5 reports time distributions 
between subsequent exposures for the study drugs. This 
approach was consistent with safety follow-up in registry 
regulatory safety studies for biologics marketed by the 
sponsor [49]. Additionally, we right-censored ‘on-treat-
ment’ TAR at an exposure to a comparison drug, adalim-
umab, or etanercept; for the target cohorts, exposure was 
censored on other TNF alpha inhibitor (TNFαi) or inter-
leukin inhibitors and the comparator cohorts, exposure 
was censored at the exposures listed in Table 2.

Within each database and study population, we fit a 
Cox proportional-hazards (PH) regression model con-
ditioned on PS-matched sets with Remicade® treatment 
status as the explanatory variable to model the time to 
the first ever NIU occurrence relative to the comparator 
group. This requirement excluded patients with a pre-
index NIU event from the analysis.

In addition to the NIU outcome of interest, we also exe-
cuted each study comparison against a set of 86 negative 
control outcomes to identify and correct for unobserved 
confounding and design or analytic misspecification 
[50]. Negative control outcomes are conditions known 
not to be causally associated with the target or compara-
tor cohort exposures. Negative controls were selected 
by a semi-automated process that identifies conditions 
with no evidence of causal drug effects per spontaneous 
reports, published literature, and product labels [51]. 
Because of the a priori assertion of no target or compara-
tor effect on the negative control outcomes, we assume 
the difference between hypothetical null (hazard ratio 
[HR] = 1) and the observed effect on a negative control is 
considered residual systematic error from unmeasured 
sources. The set of negative controls outcomes are in 
Appendix 6. We calibrated the NIU hazard ratios against 
the empirical null distribution to adjust for observed 
residual bias and reported calibrated hazard ratios (cHR) 
as the effect estimate.

In addition to the primary analysis described above, we 
included secondary analyses with 1:1 PS matching and an 
‘intention-to-treat’ (ITT) TAR. The ITT TAR began on 
the day after index and ended at the end of observation 
time in the database and was not right censored at dis-
continuation or exposure to other drugs.

Our two PS matching strategies (1:10, 1:1), two TAR 
risk definitions (‘on-treatment’, ‘ITT’), four comparisons 
(Remicade® vs. comparator in IBD, AS, PsO/PsA, and RA 
study populations), by five databases (CCAE, Clinformat-
ics®, Pharmetrics, Optum® EHR, and Amb EMR) resulted 
in 80 individual analyses, each intended to produce a sin-
gle effect estimate. Twenty of these analyses were desig-
nated as primary (1:10 matching strategy, ‘on-treatment’ 
TAR, by four comparisons, and by five databases).

For each study population comparative analysis that 
passed diagnostics, we calculated the heterogeneity of 
hazard ratios across databases using the I2 metric and 
performed a meta-analysis using a DerSimonian-Laird 
estimate of the random effects variance [52]. We com-
puted meta-analytic effect estimates when estimates 

Table 3  Confusion matrix contingency cell counts and misclassification errors for the primary non-infectious uveitis outcome 
definition across databases
Database TP TN FP FN Sensitivity Specificity PPV NPV
Amb EMR 496 1,412,594 241 465 0.516129 0.999829 0.672999 0.99967
Pharmetrics 2249 1,967,965 1244 6378 0.260577 0.999368 0.643573 0.996769
Optum® EHR 1369 1,946,703 317 3271 0.295043 0.999838 0.811981 0.998323
Clinformatics® 6007 1,658,007 1673 6725 0.471762 0.998992 0.782031 0.99596
CCAE 4044 1,912,446 949 6283 0.391595 0.999504 0.809934 0.996725
Key –Amb EMR: IQVIA Ambulatory Electronic Medical Records, Pharmetrics: IQVIA Adjudicated Health Plan Claims Data, Optum® EHR: Optum® De-Identified 
Electronic Health Record, Clinformatics®: Optum® De-Identified Clinformatics® Data Mart Database, CCAE: Merative™ MarketScan® Commercial Database, TP: true 
positives, TN: true negatives, FP: false positives, FN: false negatives, Sensitivity = TP/(TP + FN), Specificity = TN/(TN + FP), PPV = positive predictive value = TP/(TP + FP), 
NPV = negative predictive value = TN/(TN + FN), Primary outcome definition: [first occurrence of a NIU code with a second NIU code occurrence between 31 days and 
365 days relative to first occurrence] OR [first occurrence of a NIU code during an ophthalmology visit]
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of heterogeneity across databases were sufficiently low 
(I2 < 40%). Meta-analytic results from our primary anal-
ysis were our main source of statistical inference from 
which we drew causal inference conclusions. Where 
meta-analytic estimates were unavailable because of 
failing diagnostics or unacceptable heterogeneity, we 
reported and interpreted database-specific estimates.

Evidence validity diagnostics
The target estimand in this study is the average treat-
ment effect in the overlap (ATO) population [53]. One 
key assumption for causal inference from a potential out-
comes framework is exchangeability [54]. In the context 
of estimating the average treatment effect among the 
treated (ATT) (and the ATO using PS matching with a 
caliper) we assume partial exchangeability, the potential 
outcome under no treatment must be unrelated to treat-
ment assignment conditional on measured covariates 
[36, 53]. The PS is a balancing score, such that the distri-
bution of observed baseline covariates will be equivalent 
between target and comparator patients with similar PS 
values, and if strong ignorability with partial exchange-
ability holds then treatment assignment is unrelated to 
the potential outcome under no treatment conditional 
on the PS [43]. PS matching is used to approximate 
exchangeability between exposed patient cohorts that 
have been selectively assigned treatments during rou-
tine clinical care. Exchangeable target and comparator 
cohorts are those where exposure status is the only dif-
ference between them, where we can attribute any differ-
ence in outcome occurrence to exposure status only [55].

For each analysis in each database intended to generate 
an effect estimate, we applied the following validity diag-
nostics to determine whether we could report the result 
as reliable.

Empirical equipoise
Empirical equipoise is a diagnostic related to partial 
exchangeability. Specifically, target and comparator 
cohorts with similar PS distributions, or a high degree of 
overlap, will have similar baseline covariate distributions 
on average. Further, these patient cohorts will resemble 
each other on observed baseline covariates including 
confounders, thereby making it more likely that the par-
tial exchangeability assumption has been met. After fit-
ting the PS model, plotting the PS distribution stratified 
by exposure status can help assess partial exchangeabil-
ity. By calculating the proportion of study population 
patients with PS overlap near equipoise (PS = 0.5), we 
can appraise comparability appropriateness before apply-
ing any statistical balancing techniques to strengthen 
exchangeability. A patient is in empirical equipoise if 
their preference score (a transformation of the PS that 
normalizes for exposure cohort size imbalances) is 

between 0.3 and 0.7 of the preference score distribution 
[56]. If the proportion of patients in empirical equipoise 
was less than 35% in an analysis, then it failed the equi-
poise diagnostic. We were more liberal than the 50% 
threshold proposed by Walker [56] because we priori-
tized bias reduction and internal validity over initial com-
parability assessment.

Covariate balance
Covariate balance is another diagnostic related to partial 
exchangeability. Conditional on the PS, patients of dif-
ferent exposure status should have similar distributions 
of baseline covariates. This assertion requires empiri-
cal confirmation to meet the assumption that treatment 
effect estimates are only valid only if patients in the two 
exposure cohorts have similar distributions of observed 
baseline covariates [57]. In the sample of PS-matched 
patients, we assessed baseline covariate distribution simi-
larity by calculating and plotting the absolute standard-
ized difference (ASD) [57] of every covariate before and 
after applying PS matching. For binary covariates, the 
ASD is the absolute prevalence difference of a covariate 
in units of the pooled standard deviation and is insensi-
tive to sample size. We considered after matching ASDs 
less than 0.1 to indicate a negligible difference between 
cohorts in a pairwise comparison [57]. If any covariate in 
a comparison had an ASD greater than or equal to 0.1, 
then the analysis failed the covariate balance diagnostic.

Expected absolute standardized error
The expected absolute standardized error (EASE) met-
ric detects and quantifies residual bias from unobserved 
sources, which relates to the assumption of partial 
exchangeability. To compute EASE, we first generate a 
residual systematic error distribution using effect size 
estimates for negative controls, assuming this distribu-
tion follows a normal distribution. We fit this distribution 
similarly to the random-effects component in a meta-
analysis, capturing deviations from the null that are not 
attributed to random error (as indicated by estimated sys-
tematic errors) [58, 59]. EASE then summarizes this sys-
tematic error distribution by integrating over its absolute 
values. An EASE of 0 suggests that the variance in nega-
tive control estimates is fully explained by random error, 
indicating the absence of systematic error. We considered 
analyses where EASE was greater than 0.25 to have failed 
the diagnostic. When EASE = 0.25 and systematic error is 
centered on 0, a true relative risk of 1 has a 95% prob-
ability of being observed between 0.54 and 1.85 due to 
systematic error. Although empirical calibration could 
statistically restore nominal operating characteristics, we 
decided EASE > 0.25 identified unacceptable design oper-
ating characteristics even after PS adjustment.
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Non-zero event counts
For a HR to be estimated from a Cox PH model, outcome 
occurrences during the TAR for both target and compar-
ator cohorts in the analysis had to be greater than zero. 
Otherwise, the HR would approach negative or positive 
infinity, which is not a valid estimate of a causal effect. 
Analyses where target and/or comparator TAR outcome 
occurrence counts were zero failed this diagnostic.

Representativeness
In establishing valid causal estimates from observational 
data, patient restriction from the original study popula-
tion is sometimes required, for example, when patients 
are excluded after PS matching or for having an outcome 
occur before index. This practice is often necessary to 
ensure the interval validity of the study, but it can be at 
odds with representativeness. While it has been argued 
that representativeness may not be essential for scientific 
study [60], the extent to which the characteristics distri-
bution of the restricted analytic cohort differ from that of 
the original study population can be assessed empirically. 
We assessed the extent to which baseline characteristics 
of the after-matching target cohort are like those of the 
initial target cohort. We evaluated covariate similarity 
between the two cohorts by plotting the prevalence of all 
baseline covariates and calculating ASDs [61]. Note that 
representativeness was assessed qualitatively with no set 
threshold for meeting a representativeness criterion.

We set the thresholds for the empirical equipoise, 
covariate balance, and expected absolute standardized 
error somewhat arbitrarily, but we assert that a criti-
cal feature of validity diagnostics is to set thresholds a 
priori and adhere to them strictly to avoid investigator 
bias from post-hoc analyses conditional on preliminary 
results. Our pre-specified protocol was posted at: ​h​t​t​​p​s​:​
/​​/​g​i​​t​h​​u​b​.​​c​o​m​/​​o​h​d​​s​i​​-​s​t​u​d​i​e​s​/​U​v​e​i​t​i​s​S​a​f​e​t​y​E​s​t​i​m​a​t​i​o​n​/​t​r​e​e​
/​m​a​s​t​e​r​/​D​o​c​u​m​e​n​t​s​​​​​.​​

Results
Our full diagnostics and clinical results are publicly avail-
able for review in the Estimation Diagnostics Explorer 
interactive web application available at ​h​t​t​​p​s​:​/​​/​d​a​​t​a​​.​o​h​d​s​i​
.​o​r​g​/​U​v​e​i​t​i​s​S​a​f​e​t​y​E​s​t​i​m​a​t​i​o​n​/​​​​​. In the ‘Explore results’ tab 
on the left panel, a user can select a target cohort, com-
parator cohort, data source, and analysis variant to dis-
play a results table that includes database-specific and 
meta-analytic results for the selection. Results in the table 
that did not pass all validity diagnostics are blinded as 
‘NA’ to discourage the investigators and reviewers from 
interpreting flawed causal estimates. By clicking a row in 
the table, a set of diagnostics results associated with the 
row estimate is presented including exposure and event 
counts, minimum detectable relative risk, attrition tables, 

representativeness statistics, PS diagnostics, covariate 
balance, and the empirical null distribution.

Evidence evaluation
We subjected 80 analyses to validity diagnostics of which 
19 (24%) passed. Of the 20 analyses designated as pri-
mary, 4 (20%) passed diagnostics. Of the 34 analyses that 
passed three diagnostics, most failed to achieve covariate 
balance where all covariates had an ASD < 0.1. Of the 15 
analyses that passed two diagnostics, all failed covariate 
balance and most failed equipoise.

Table 4 reports the 20 primary analyses with associated 
diagnostics results. Each row represents a single target 
versus comparator comparison within an indicated study 
population per database. Further, each row includes col-
umns indicating values for each validity diagnostic and 
an indicator for whether the diagnostic passed the pre-
specified criteria. For example, the first row represents 
the comparison between new users of Remicade® and 
new users of certolizumab pegol, golimumab, ixeki-
zumab, or secukinumab among patients with AS in the 
Amb EMR database. In this analysis, we observed no 
NIU events during either exposure cohort TAR (failed 
diagnostic), the maximum ASD was 0.302 (failed diag-
nostic), the proportion of patients in empirical equipoise 
was 0.531 (passed diagnostic), and the EASE metric was 
0.976 (failed diagnostic). Consequently, this analysis 
passed 1 of 4 diagnostics therefore the effect estimate was 
not reviewed because it could not be interpreted as caus-
ally valid.

Rows that are bolded indicate analyses that passed 
the four validity diagnostics. In the IBD study popula-
tion, primary analyses in Pharmetrics, Optum® EHR, and 
CCAE passed the four diagnostics meaning we reviewed 
the estimates and could interpret them as causally 
valid.  In the RA study population, the primary analysis 
in Optum EHR® passed the four diagnostics meaning we 
could interpret the estimate as causally valid.

Figure 1 depicts the preference score overlap, covariate 
balance plot, the empirical null distribution, and repre-
sentativeness diagnostics (columns) for the five databases 
(rows) for the comparisons in the IBD study population. 
Corresponding to the bolded IBD rows in Table  4, the 
Fig.  1 rows for Pharmetrics, Optum® EHR, and CCAE 
present plots that passed each diagnostic. In the Phar-
metrics row, empirical equipoise is 43.6% (greater than 
the 35% pre-specified threshold), 0 covariates had an 
ASD > 0.1, and EASE was 0.07 (less than the 0.25 pre-
specified threshold). Lastly, the representativeness plot 
displays high concordance between covariate preva-
lence of the initial target Remicade® cohort (n = 22,451) 
[see Fig.  3] and the after matching Remicade® cohort 
(n = 10,169) from which we estimated the effect on NIU. 
The close distribution of data points about the diagonal 

https://github.com/ohdsi-studies/UveitisSafetyEstimation/tree/master/Documents
https://github.com/ohdsi-studies/UveitisSafetyEstimation/tree/master/Documents
https://github.com/ohdsi-studies/UveitisSafetyEstimation/tree/master/Documents
https://data.ohdsi.org/UveitisSafetyEstimation/
https://data.ohdsi.org/UveitisSafetyEstimation/


Page 9 of 20Weaver et al. BMC Medical Research Methodology          (2024) 24:322 

Ta
bl

e 
4 

D
ia

gn
os

tic
 re

su
lts

 fo
r p

rim
ar

y 
an

al
ys

es
, r

ow
s b

ol
de

d 
pa

ss
ed

 fo
ur

 v
al

id
ity

 d
ia

gn
os

tic
s

St
ud

y 
po

p.
D

at
ab

as
e

Ta
rg

et
Co

m
pa

ra
to

r
T 

ev
en

ts
C 

ev
en

ts
0 

ev
en

t P
as

s
M

ax
 A

SD
A

SD
 P

as
s

Eq
ui

po
is

e
Eq

ui
po

is
e 

Pa
ss

EA
SE

EA
SE

 P
as

s
To

ta
l P

as
se

d
AS

Am
b 

EM
R

Re
m

ic
ad

e®
AS

 c
om

pa
ra

to
r

0
0

0
0.

30
2

0
0.

53
1

1
0.

97
6

0
1

AS
Ph

ar
m

et
ric

s
Re

m
ic

ad
e®

AS
 c

om
pa

ra
to

r
6

9
1

0.
15

7
0

0.
40

5
1

0.
04

4
1

3
AS

O
pt

um
® 

EH
R

Re
m

ic
ad

e®
AS

 c
om

pa
ra

to
r

<
 5

6
1

0.
21

8
0

0.
63

8
1

0.
23

3
1

3
AS

Cl
in

fo
rm

at
ic

s®
Re

m
ic

ad
e®

AS
 c

om
pa

ra
to

r
<

 5
<

 5
1

0.
27

2
0

0.
41

7
1

0.
17

2
1

3
AS

CC
AE

Re
m

ic
ad

e®
AS

 c
om

pa
ra

to
r

<
 5

6
1

0.
23

9
0

0.
43

4
1

0.
18

0
1

3
IB

D
Am

b 
EM

R
Re

m
ic

ad
e®

IB
D

 c
om

pa
ra

to
r

<
 5

<
 5

1
0.

09
1

0.
42

2
1

0.
28

4
0

3
IB

D
Ph

ar
m

et
ri

cs
Re

m
ic

ad
e®

IB
D

 c
om

pa
ra

to
r

12
42

1
0.

04
7

1
0.

43
1

1
0.

07
4

1
4

IB
D

O
pt

um
®  E

H
R

Re
m

ic
ad

e®
IB

D
 c

om
pa

ra
to

r
< 

5
7

1
0.

05
5

1
0.

48
0

1
0.

08
7

1
4

IB
D

Cl
in

fo
rm

at
ic

s®
Re

m
ic

ad
e®

IB
D

 c
om

pa
ra

to
r

6
15

1
0.

10
5

0
0.

41
2

1
0.

04
0

1
3

IB
D

CC
A

E
Re

m
ic

ad
e®

IB
D

 c
om

pa
ra

to
r

10
18

1
0.

07
1

1
0.

38
7

1
0.

10
7

1
4

Ps
O

/P
sA

Am
b 

EM
R

Re
m

ic
ad

e®
Ps

O
/P

sA
 c

om
pa

ra
to

r
0

0
0

0.
14

5
0

0.
25

4
0

0.
34

4
0

0
Ps

O
/P

sA
Ph

ar
m

et
ric

s
Re

m
ic

ad
e®

Ps
O

/P
sA

 c
om

pa
ra

to
r

<
 5

10
1

0.
13

2
0

0.
15

5
0

0.
17

8
1

2
Ps

O
/P

sA
O

pt
um

® 
EH

R
Re

m
ic

ad
e®

Ps
O

/P
sA

 c
om

pa
ra

to
r

6
<

 5
1

0.
09

9
1

0.
30

6
0

0.
24

6
1

3
Ps

O
/P

sA
Cl

in
fo

rm
at

ic
s®

Re
m

ic
ad

e®
Ps

O
/P

sA
 c

om
pa

ra
to

r
0

7
0

0.
19

9
0

0.
17

1
0

0.
11

0
1

1
Ps

O
/P

sA
CC

AE
Re

m
ic

ad
e®

Ps
O

/P
sA

 c
om

pa
ra

to
r

<
 5

9
1

0.
16

7
0

0.
14

7
0

0.
01

0
1

2
RA

Am
b 

EM
R

Re
m

ic
ad

e®
(m

)
RA

 c
om

pa
ra

to
r

<
 5

0
0

0.
12

7
0

0.
44

5
1

0.
30

7
0

1
RA

Ph
ar

m
et

ric
s

Re
m

ic
ad

e®
(m

)
RA

 c
om

pa
ra

to
r

<
 5

6
1

0.
17

9
0

0.
35

2
1

0.
15

8
1

3
RA

O
pt

um
®  E

H
R

Re
m

ic
ad

e® (m
)

RA
 c

om
pa

ra
to

r
5

< 
5

1
0.

09
7

1
0.

55
8

1
0.

14
1

1
4

RA
Cl

in
fo

rm
at

ic
s®

Re
m

ic
ad

e®
(m

)
RA

 c
om

pa
ra

to
r

<
 5

8
1

0.
25

2
0

0.
36

3
1

0.
03

4
1

3
RA

CC
AE

Re
m

ic
ad

e®
(m

)
RA

 c
om

pa
ra

to
r

<
 5

8
1

0.
15

1
0

0.
50

8
1

0.
07

0
1

3
Ke

y:
 <

5 
= 

a 
ce

ns
or

ed
 v

al
ue

 b
et

w
ee

n 
1 

an
d 

4;
 A

m
b 

EM
R 

= 
IQ

VI
A

 A
m

bu
la

to
ry

 E
le

ct
ro

ni
c 

M
ed

ic
al

 R
ec

or
ds

; A
S 

co
m

pa
ra

to
r =

 ce
rt

ol
iz

um
ab

 p
eg

ol
, g

ol
im

um
ab

, i
xe

ki
zu

m
ab

, o
r 

se
cu

ki
nu

m
ab

; A
S 

= 
an

ky
lo

si
ng

 s
po

nd
yl

iti
s;

 
A

SD
 =

 a
bs

ol
ut

e 
st

an
da

rd
iz

ed
 d

iff
er

en
ce

; C
C

A
E 

= 
M

er
at

iv
e™

 M
ar

ke
tS

ca
n®

 C
om

m
er

ci
al

 D
at

ab
as

e;
 C

lin
fo

rm
at

ic
s®

 =
 O

pt
um

® 
D

e-
Id

en
tifi

ed
 C

lin
fo

rm
at

ic
s®

 D
at

a 
M

ar
t 

D
at

ab
as

e;
 E

A
SE

 =
 e

xp
ec

te
d 

ab
so

lu
te

 s
ys

te
m

at
ic

 e
rr

or
; 

IB
D

 c
om

pa
ra

to
r =

 g
ol

im
um

ab
, c

er
to

liz
um

ab
 p

eg
ol

, u
st

ek
in

um
ab

, o
r 

ve
do

liz
um

ab
; I

BD
 =

 ir
rit

ab
le

 b
ow

el
 d

is
ea

se
s 

(C
ro

hn
’s 

di
se

as
e 

or
 u

lc
er

at
iv

e 
co

lit
is

); 
O

pt
um

® 
EH

R 
= 

O
pt

um
® 

D
e-

Id
en

tifi
ed

 E
le

ct
ro

ni
c 

H
ea

lth
 R

ec
or

d;
 

Ph
ar

m
et

ric
s =

 IQ
VI

A
 A

dj
ud

ic
at

ed
 H

ea
lth

 P
la

n 
Cl

ai
m

s 
D

at
a;

 P
sO

/P
sA

 c
om

pa
ra

to
r =

 g
ol

im
um

ab
, c

er
to

liz
um

ab
 p

eg
ol

, g
us

el
ku

m
ab

, r
is

an
ki

zu
m

ab
, t

ild
ra

ki
zu

m
ab

, b
ro

da
lu

m
ab

, i
xe

ki
zu

m
ab

, s
ec

uk
in

um
ab

, o
r u

st
ek

in
um

ab
; P

sO
/

Ps
A

 =
 p

so
ria

tic
 c

on
di

tio
ns

 p
la

qu
e 

ps
or

ia
si

s 
or

 p
so

ria
tic

 a
rt

hr
iti

s;
 R

A
 c

om
pa

ra
to

r =
 ce

rt
ol

iz
um

ab
 p

eg
ol

 o
r 

to
ci

liz
um

ab
; R

A
 =

 rh
eu

m
at

oi
d 

ar
th

rit
is

; R
em

ic
ad

e®
(m

) =
 R

em
ic

ad
e®

 e
xp

os
ur

e 
w

ith
 c

on
cu

rr
en

t 
m

et
ho

tr
ex

at
e;

 S
tu

dy
 

po
p.

 =
 s

tu
dy

 p
op

ul
at

io
n



Page 10 of 20Weaver et al. BMC Medical Research Methodology          (2024) 24:322 

indicates that the prevalence of baseline covariates 
between the target and after matching cohort were simi-
lar, suggesting that patient attrition from PS matching did 
not substantially alter the composition of the target pop-
ulation. By contrast, the representativeness plot for Amb 
EMR suggests greater differences between the target 
and after matching cohort in this database. We observed 
similar passed diagnostic results in the Fig. 1 rows for the 
Optum® EHR and CCAE databases. It is worth noting 
that Clinformatics® failed diagnostics based on ASD = 0.1 
for one covariate (an observation of ‘Requires Bacillus 
Calmette-Guerin vaccination’ in 365 days before and 
including index). This covariate was of low prevalence 
before and after matching, so despite difference across 
cohorts, may not have a strong confounding impact on 
the effect estimate were it also associated with the out-
come. But strict adherence to a priori defined thresholds 
dictate a diagnostics failure.

Figure  2 depicts the same diagnostics informa-
tion as Fig.  1 but for the comparisons in the RA study 

population. Corresponding to the bolded RA row in 
Table  4, the Fig.  2 row for Optum® EHR presents plots 
that passed each diagnostic. Empirical equipoise is 55.9% 
(greater than the 35% pre-specified threshold), 0 covari-
ates had an SMD > 0.1, and EASE was 0.14 (less than 
the 0.25 pre-specified threshold). Lastly, representa-
tiveness was considered acceptable by the high concor-
dance between covariate prevalence of the initial target 
Remicade® with methotrexate cohort (n = 4,173) and the 
analytic Remicade® with methotrexate cohort (n = 2,700) 
from which we estimated the effect on NIU. Of note is 
that in Pharmetrics, the prevalence of baseline charac-
teristics was greater in the Remicade® with concurrent 
methotrexate initial target cohort than after PS match-
ing, suggesting that attrition from PS matching may have 
selectively excluded patients of greater comorbidity.

Appendix 7 reports diagnostic results for second-
ary analyses in all study populations. Twelve secondary 
analyses passed diagnostics in the IBD study population 
across multiple data sources, some of which contributed 

Fig. 1  Empirical equipoise, covariate balance, empirical calibration validity diagnostics and representativeness for IBD primary analysis
Key: Amb EMR = IQVIA Ambulatory Electronic Medical Records; ASMD = absolute standardized mean difference; CCAE = Merative™ MarketScan® Com-
mercial Database; CI = Confidence Interval; Clinformatics® = Optum® De-Identified Clinformatics® Data Mart Database; EASE = expected absolute sys-
tematic error; HR = Hazard ratio; IBD = irritable bowel diseases (Crohn’s disease or ulcerative colitis); IBD comparator = golimumab, certolizumab pegol, 
ustekinumab, or vedolizumab; Optum® EHR = Optum® De-Identified Electronic Health Record; Pharmetrics = IQVIA Adjudicated Health Plan Claims Data; 
Remicade®(m) = Remicade® exposure; Target covariate prevalence = prevalence of baseline covariates in the initial Remicade® exposure cohort before 
study design restrictions were applied; Analytic covariate prevalence = prevalence of baseline covariates in Remicade® exposure cohort after study design 
restrictions were applied (i.e., PS matching)

 



Page 11 of 20Weaver et al. BMC Medical Research Methodology          (2024) 24:322 

Fig. 3  Attrition diagrams for inflammatory bowel diseases (IBD); patient attrition counts and proportions after sequential design choices applied
Key: Amb EMR = IQVIA Ambulatory Electronic Medical Records; ASMD = absolute standardized mean difference; CCAE = Merative™ MarketScan® Com-
mercial Database; CI = Confidence Interval; Clinformatics® = Optum® De-Identified Clinformatics® Data Mart Database; EASE = expected absolute system-
atic error; HR = Hazard ratio; Optum® EHR = Optum® De-Identified Electronic Health Record; Pharmetrics = IQVIA Adjudicated Health Plan Claims Data; 
RA = rheumatoid arthritis; RA comparator = certolizumab pegol or tocilizumab; Remicade®(m) = Remicade® exposure with concurrent methotrexate; Tar-
get covariate prevalence = prevalence of baseline covariates in the initial Remicade® exposure cohort before study design restrictions were applied; Ana-
lytic covariate prevalence = prevalence of baseline covariates in Remicade® exposure cohort after study design restrictions were applied (i.e., PS matching)

 

Fig. 2  Empirical equipoise, covariate balance, empirical calibration validity diagnostics and representativeness for RA primary analysis
Key – Target: patients with inflammatory bowel diseases newly exposed to Remicade®, Comparator: patients with inflammatory bowel diseases newly ex-
posed to [golimumab, certolizumab pegol, ustekinumab, or vedolizumab], CCAE: Merative™ MarketScan® Commercial Database, Optum® EHR = Optum® 
De-Identified Electronic Health Record; Pharmetrics = IQVIA Adjudicated Health Plan Claims Data
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to meta-analytic results. Three secondary analyses passed 
diagnostics in the RA study population, all in Optum® 
EHR. The figures supporting diagnostic results from sec-
ondary analyses are available in the Estimation Diag-
nostics Explorer.

Clinical results
Primary findings
IBD  Figure 2 reports attrition counts for design restric-
tions of the primary analysis in the databases that passed 
diagnostics (Optum® EHR, Pharmetrics, CCAE). For 
example, in Optum EHR® the initial target cohort included 
19,737 patients (new users of Remicade® with IBD, defi-
nition in Appendix 2). After restricting to calendar time 
when target and comparator patients were both observed, 
excluding patients with a prior outcome and who had no 
time-at-risk, and excluding patients not matched on the 
PS, the final after matching target cohort included 8,697 
patients (44% of initial target population). In Pharmetrics 
and CCAE the after matching population was 45% and 
23% of the initial target population, respectively. Note that 
the initial target cohort size was greater than the initial 
comparator cohort size (e.g., 19,307 vs. 7,079 in CCAE, 
Fig. 2). The high attrition from PS matching results from 
our applying 1:10 variable ratio target to comparator PS 
matching, where the initial target cohort patient count 
is greater than that of the comparator. This could impact 

representativeness, although our representativeness 
assessment showed few observable characteristic distri-
bution differences between the initial and after matching 
target cohorts.

Figure  4 reports the primary analysis after matching 
target and comparator patient counts, event counts, inci-
dence rates per 1000 person-years (IR/1k PYs) and cali-
brated hazard ratios with 95% confidence intervals (cHR 
[95% CI]) for database that passed diagnostics (Optum® 
EHR, Pharmetrics, CCAE) and the meta-analytic esti-
mate. Database-specific IRs ranged from 0.70 to 2.51/1k 
PYs classifying NIU in the exposed populations with IBD 
as rare to uncommon [62]. The pooled IRs were 1.13 and 
2.04/1k PYs (uncommon) for the target and comparator 
cohorts, respectively. The database-specific estimates 
ranged from 0.48 (Optum® EHR) to 1.00 (CCAE). The 
meta-analytic result failed to reject the null hypothesis 
of no effect and indicated that Remicade® was not associ-
ated with an increased risk of NIU compared to [golim-
umab, certolizumab pegol, ustekinumab, or vedolizumab] 
during the on-treatment time at risk (cHR 0.73 95% CI 
0.38, 1.40). If an increased risk of NIU caused by Remi-
cade® in the IBD study population exists, it is unlikely to 
be greater than 40%, given the 1.40 upper bound of the 
pooled cHR confidence interval.

Fig. 4  Risk of non-infectious uveitis (NIU) among patients with inflammatory bowel diseases (IBD)
Key – PS: propensity score, OT: on-treatment, ITT: intention-to-treat, T: Remicade® new users with IBD, C: golimumab, certolizumab pegol, ustekinumab, 
or vedolizumab new users with IBD, IR: incidence rate, PYs: person-years, CCAE: Merative™ MarketScan® Commercial Database, Optum® EHR: Optum® De-
Identified Electronic Health Record, Pharmetrics: IQVIA Adjudicated Health Plan Claims Data
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RA  Figure  5 reports attrition counts for design restric-
tions of the primary analysis in Optum® EHR, the one 
database that passed diagnostics for the comparison in 
the RA study population. The initial target population was 
4,173, which was reduced to 2,700 (65%) after PS match-
ing and other design restrictions were applied.

The target and comparator IRs were 2.93 and 1.13/1k 
PYs classifying NIU in the exposed populations with RA 
as uncommon and rare, respectively [62]. Among 2,700 

target patients PS matched to 6,507 comparator patients, 
we observed 5 and 4 events respectively with cHR 1.23 
(95% CI 0.14, 10.47). Although this suggests no strong 
evidence of an increased risk, the low event counts and 
high imprecision makes it difficult to conclude whether 
an increased NIU risk exists for Remicade® new users in 
the RA study population.

Fig. 5  Attrition diagram for rheumatoid arthritis (RA); patient attrition counts and proportions after sequential design choices applied in the Optum® 
EHR database
Key – Target: patients with RA newly exposed to Remicade®, Comparator: patients with RA newly exposed to golimumab, certolizumab pegol, ustekinum-
ab, vedolizumab]
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AS, PsO/PsA  No exposure comparisons in the AS and 
PsO/PsA study population passed all validity diagnostics, 
so no NIU safety evidence was generated.

Secondary findings
The findings from our secondary analyses were broadly 
like those of the primary analysis (Fig. 4). Of the 60 sec-
ondary analyses, 15 passed all diagnostics and were 
reviewed (Appendix 7). In the IBD study population 
under the 1:10 PS matched ITT analysis, we observed a 
pooled cHR of 0.67 (95% CI 0.43, 1.04). Further, under 
the 1:1 PS matched ITT analysis, the pooled cHR was 
0.66 (95% CI 0.41, 1.06). We observed a pooled cHR 
of 0.64 (95% CI 0.32, 1.31) in the 1:1 PS matched on-
treatment analysis. The narrower CIs of the ITT analy-
sis could suggest more NIU events were observed in the 
comparator TAR after the on-treatment time, but we rec-
ognize this TAR was not our primary analysis for mak-
ing inference. In the RA study population under the 1:10 
PS matched ITT analysis, we observed a pooled cHR 1.09 
(95% CI 0.44, 2.71) in the Optum® EHR database. Fur-
ther, under the 1:1 PS matched ITT analysis the pooled 
cHR was 1.74 (95% CI 0.55, 5.48) also in Optum® EHR. 
Regardless of the database, study population, PS match-
ing strategy, or the TAR, we observed no evidence that 
Remicade® was causally associated with an increased risk 
for NIU relative to alternative therapies used within the 
same indication study population. Full details on these 
clinical finding with full diagnostics results can be found 
at the Estimation Diagnostics Explorer.

Discussion
We assessed the threats to validity of Remicade® com-
parative safety effects on NIU using four pre-specified 
diagnostics. Four of our 20 primary analyses conducted 
across a network of 5 US observational databases passed 
all validity diagnostics. Of the 80 primary and second-
ary analyses, 19 of 80 (24%) passed all diagnostics. That 
most analyses failed diagnostics suggests that the clinical, 
scientific, and analytic complexity of the research ques-
tion applied to heterogenous databases was not easily 
addressed despite the application of many best practices 
in the field supported by robust methodological research 
[63]. This complexity notwithstanding, we identified 
three databases that passed validity diagnostics in the 
IBD study population, which facilitated a meta-analysis.

The methodological implementation of the research 
question was complex for two reasons. First, because 
Remicade® is indicated for several autoimmune disorders 
that have primary manifestations such as joint pain and 
bowel inflammation but can also have secondary mani-
festations such as NIU. We accounted for potential con-
founding by indication by designing an active comparator 
cohort study where the target and comparator exposures 

were both indicated for the same underlying disease, 
thereby balancing the baseline risk for NIU. Because 
NIU risk differs among Remicade® indicated populations 
[64], we approximated equal baseline NIU risk distribu-
tion between target and comparator cohorts by conduct-
ing comparisons within non-mutually exclusive study 
populations (i.e., IBD, PsA/PsO, RA, and AS). Second, 
Remicade® is an early biologic therapy with five adult 
indications [65] for which alternative therapies are avail-
able. This complexity was reflected in the finding that of 
16 analyses × 5 databases = 80 effect estimates, 61 (76%) 
failed diagnostics and did not produce an estimate we 
could interpret as causal.

Empirical equipoise is a state in which a health care 
provider would be indifferent to treatment choice given 
the benefits and risks of competing potential therapies 
and the known clinical history of a patient. In the context 
of a comparative study, empirical equipoise is identified 
as a proportion of patients for whom provider prefer-
ence for a target or comparator treatment is equivalent. 
Although we designed our treatment comparisons to be 
among patients with the same underlying conditions to 
control for confounding by indication and create more 
balanced groups, patient characteristics may still have 
influenced treatment preference. Empirical equipoise was 
proposed as a feasibility diagnostic to determine whether 
most (≥ 50%) patients in a comparative effect estimation 
study would be near equally likely (between 0.3 and 0.7 
of the preference score distribution) to be assigned either 
treatment, conditional on their clinical history [56]. All 
primary analyses in the PsO/PsA study population failed 
empirical equipoise at our lower threshold of 35%, which 
suggests that the multi-drug comparator cohort of [goli-
mumab, certolizumab pegol, guselkumab, risankizumab, 
tildrakizumab, brodalumab, ixekizumab, secukinumab, 
or ustekinumab] may not represent suitable exposures for 
comparison to Remicade® in this population. It is possible 
that patient heterogeneity among the multi-drug com-
parator population made equipoise difficult to achieve. 
Of the primary analyses that failed equipoise, two failed 
the zero events diagnostic (Amb EMR and Clinformat-
ics®) and one failed EASE (Amb EMR). Given that less 
than 35% of patients were in equipoise for all databases in 
this study population, it followed that PS matching failed 
to achieve covariate balance in the one database (Optum 
EHR®) with the largest cohort sizes and most data for 
LSPS modeling. This finding lends support the use of 
empirical equipoise as a practical feasibility tool as was 
its original intent.

In the large IBD study population, we achieved a pri-
ori specified covariate balance in four of the five data-
bases, although as noted above, covariate balance failure 
in Clinformatics® was based on one covariate which was 
unlikely to be a confounder because of a 0.007% baseline 
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prevalence target comparator-difference of ‘Requires 
Bacillus Calmette-Guerin vaccination.’ Although likely 
inapplicable in this clinical content, this finding illustrates 
the utility of using LSPS adjustment methods. The classic 
directed acyclic graph intended to encode confounding is 
the following: A → Y and A ← X → Y, where A = expo-
sure status, Y = outcome, and X = [vector of confounding 
covariates]. Typically, investigators will select confound-
ers to balance patients of differing exposure status using 
expert opinion or a screening algorithm [66], where the 
former method assumes known confounding structure 
and covariates and the latter relies on analyzing outcome 
associations before establishing covariate balance [67–
69]. An advantage to the LSPS approach is that it assumes 
no confounding structure, nor does it analyze the out-
come in identifying confounders for balancing. Rather, by 
including all baseline covariates as candidate predictors 
of exposure status, the LSPS selects and includes highly 
discriminative covariates into a final parsimonious model 
and shrinks the coefficients of covariates of low discrimi-
native importance (some to zero, removing them from 
the final model). A consequence of this approach is that 
after adjustment with LSPS built with sufficiently large 
cohorts with rich baseline data, all baseline covariates 
will often be sufficiently balanced, some of which will 
be confounders. This effectively erases the X → A edge, 
which eliminates observed confounding and requires no 
untestable confounding structure assumptions. In the 
smaller RA study populations, cohort size and associated 
baseline covariate data were sufficiently rich to achieve 
cohort balance in Optum® EHR. Although covariate 
imbalance was substantially reduced after LSPS matching 
in the RA study population in all databases, the diagnos-
tic criterion only passed in Optum® EHR. All compari-
sons in the AS study population failed covariate balance 
and four databases in the PsA/PsO study populations 
failed except for Optum® EHR. In many comparisons 
covariate imbalance was considerably reduced, which is 
encouraging, but these analyses did not meet our pre-
specified diagnostic criteria to which we strictly adhered. 
Similarly, in the RA study population, only Optum® EHR 
passed the covariate balance diagnostic. It is worth not-
ing that the LSPS is a data intensive predictive algorithm 
that better balances baseline covariates after training on 
large, high dimensional input data [47]. The Optum® EHR 
database, in which the AS and PsA/PsO comparisons 
passed covariate balance, had the largest study popula-
tions of the five databases analyzed.

EASE is a metric that summarizes the systematic error 
component of the empirical null distribution fit from 
negative control outcome effect estimates intended to 
identify and correct for unobserved confounding. Com-
parative analyses for all study populations (IBD, PsA/PsO, 
AS, and RA) failed the EASE diagnostic in the Amb EMR 

database. Compared to insurance claims databases, elec-
tronic health record databases like Amb EMR generally 
have less observable patient time and it is more inconsis-
tently captured [70]. A consequence of this is that periods 
of inferred persistent drug exposure are shorter in elec-
tronic health records which results in less opportunity to 
observe outcome events such as negative controls during 
post exposure TAR periods. As such, we observed rela-
tively few negative control events in the Amb EMR analy-
ses, which resulted in large, statistically unstable EASE 
values. The lowest EASE value we observed was 0.28 in 
the IBD analysis from an empirical null distribution com-
puted from 28/86 (33%) observed negative controls. The 
largest EASE value was 0.98 in the AS study population 
from an empirical null distribution computed from 4/86 
(5%) observed negative controls. This large EASE value 
was highly influenced by a single large negative control 
HR. In the IBD, RA, and AS study populations, Remi-
cade® increased the risk of negative controls on average, 
whereas it reduced the risk in the PsA/PsO study popu-
lation. These findings suggest that the EASE diagnostic 
and negative controls-based calibration is sensitive to 
the patient observable time, drug exposure durations, 
and the frequency of negative control occurrence during 
exposure TAR.

Causal studies estimating the effect of an exposure on 
an outcome do not necessarily rely on representative-
ness and in some cases requiring sample representative-
ness can be counterproductive to establishing the internal 
validity on which causal assumptions rely [60]. However, 
it may be worth reporting to evidence consumers the 
extent to which patient attrition from observational study 
design choices impact the constitution of the target study 
population. In our study, except for the RA study popula-
tion analysis in the Pharmetrics database (Fig. 2 [row 2, 
column 4]), the patient restrictions from our study design 
choices did not substantially alter the composition of the 
Remicade® target population.

We strove to reduce outcome misclassification by 
developing a NIU definition by following a novel phe-
notyping process [39]. In this data driven approach, we 
specified three candidate computable phenotype algo-
rithms to adhere as closely as possible to a complete 
physiological, clinical description of NIU. Our algorithms 
adhered to this clinical description to the extent possible 
given temporal logic constraints and code availability in 
standardized medical vocabularies [71]. We then com-
prehensively characterized the patient cohorts returned 
by the algorithm in the five databases and mapped the 
results against the clinical description and determined 
the extent to which the characteristics reflected the 
description. Further, we evaluated the candidate defini-
tions by estimating misclassification errors using a proba-
bilistic reference standard, a method designed for flexible 
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and scalable validation [40, 41]. As it relates to compara-
tive effect estimation, our NIU definition had high speci-
ficity which will limit bias from misclassification toward 
HR = 1.

The importance of phenotyping to support observa-
tional research is difficult to understate. When rigorously 
and transparently developed and evaluated, a phenotype 
definition acts as a reliable, consistent input to any obser-
vational analysis intended to study that patient popu-
lation. Further, when defined against a common data 
model, the definition is transportable and easily imple-
ment across databases, facilitating results interpretation 
across sources. In short, good phenotyping practices cre-
ate reusable definitions for use as consistent inputs to 
support standardized, repeatable, and reproducible evi-
dence generation. For example, since development, our 
NIU definition was included in the OHDSI community 
‘How Often’ initiative ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​o​m​/​o​h​d​s​i​-​s​t​u​d​i​e​
s​/​H​o​w​O​f​t​e​n​​​​​)​, a large-scale incidence rate characteriza-
tion study intended to systematically generate incidence 
evidence across a large set of conditions across a global, 
distributed database network [30].

Attributes of reliable evidence
Attributes of reliable evidence are that it is repeatable, 
reproducible, replicable, generalizable, robust, and cali-
brated [71]. Our study is repeatable and reproducible 
in that investigators with access to the same data, stan-
dardized to a version-controlled CDM, should be able to 
apply our exact analysis and produce an identical result. 
Repeatable and reproducible evidence implies a publicly 
available, fully pre-specified protocol including method-
ological rationale ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​​.​c​o​​m​/​o​h​​d​s​​i​-​s​t​u​d​i​e​s​/​U​v​e​
i​t​i​s​S​a​f​e​t​y​E​s​t​i​m​a​t​i​o​n​/​t​r​e​e​/​m​a​s​t​e​r​/​D​o​c​u​m​e​n​t​s​​​​​) and ​a​c​c​e​s​
s​i​b​l​e source code to review the analytic implementation 
process ​(​​​h​t​​t​p​s​​:​/​/​g​​i​t​​h​u​b​.​c​o​m​/​o​h​d​s​i​-​s​t​u​d​i​e​s​/​U​v​e​i​t​i​s​S​a​f​e​t​y​E​
s​t​i​m​a​t​i​o​n​​​​​)​. Our study is replicable in that we asked the 
same research question using identical analytic routines 
against several similar data sources (e.g., multiple US 
commercial insurance claims databases) which yielded 
comparable results. Our confidence in the reliability of 
this evidence is strengthened further by its generalizabil-
ity, since we observed consistent results across databases 
of varying content and intent (e.g., insurance claims and 
EHRs). We subjected our analysis to several sensitivity 
analyses where we were uncertain of our design specifica-
tions which resulted in consistent results, indicating that 
our results are robust. Lastly, our results are calibrated 
through our verifying the study design and implemen-
tation with design inputs expected to produce known 
results (i.e., null effects from negative control outcomes). 
Lastly, and in alignment with the LEGEND principles 
[28], we specified our study to produce a comprehensive 
set of effect estimates and we reported them all in the 

Estimation evidence explorer to avoid p-hacking and 
facilitate fully transparent review, which we encourage. 
Lastly, the replicability, generalizability, robustness, and 
calibration evidence attributes can be evaluated in full by 
reviewing the detailed results of our validity diagnostics, 
also available in the Estimation evidence explorer.

Clinical implications
NIU can lead to visual impairment and in some cases, 
blindness [72], thus understanding whether new use 
of the widely prescribed biologic product Remicade® 
among large indicated populations may increase the risk 
of NIU is crucial. NIU is a known secondary manifesta-
tion of underlying autoimmune disease, so disambiguat-
ing causal risk attributable to confounding by indication 
rather than autoimmune disease therapy with Remicade® 
is complex, particularly given that there is also an asso-
ciation between use of certain medications and develop-
ment of NIU [72]. Through the use of observational data 
sources available and the causal methods employed, we 
did not observe evidence of an increased NIU risk attrib-
utable to Remicade® in these analyses. We note, impor-
tantly, that our analyses were imprecise as shown by the 
wide CIs, so we cannot confidently rule out the hypoth-
esis of no effect.

These findings must be interpreted within the context 
of existing literature on similarly indicated TNF inhibi-
tors and their association with NIU. Etanercept, a TNFα 
and TNFβ inhibitor, is an alternative therapy for PsO/
PsA, RA, and AS and has been shown to increases risk 
of NIU [33, 35]. Adalimumab, another TNFα inhibitor, 
is another therapy indicated for IBD, PsO/PsA, RA, AS, 
but also for NIU. Several studies have demonstrated this 
product is effective in treating and reducing the risk of 
uveitis [34]. Given the existing evidence on biologic ther-
apies with similar mechanisms of action as Remicade® 
and their known increased and decreased risks of NIU, 
we must exercise caution interpreting our finding of no 
effect given the imprecision of our estimates.

No exposure comparisons in the AS and PsO/PsA 
study population passed all validity diagnostics, so no 
NIU safety evidence was generated. This finding itself is 
useful evidence, however. We have learned that this study 
design and specification is not supported by these data to 
reliably answer this NIU causal safety question in the AS 
and PsO/PsA patient populations. The implications are 
non-trivial insofar as results from a similar study insuf-
ficiently interrogated by rigorous study diagnostics could 
lead to potentially harmful clinical or policy action.

Strengths and limitations
This study has several strengths. First, it leveraged data 
from five large US-based observational health care data-
bases that provided a large, comprehensive sample of 

https://github.com/ohdsi-studies/HowOften
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https://github.com/ohdsi-studies/UveitisSafetyEstimation/tree/master/Documents
https://github.com/ohdsi-studies/UveitisSafetyEstimation
https://github.com/ohdsi-studies/UveitisSafetyEstimation
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commercially insured patients treated with biologics 
from which we could evaluate an important safety out-
come across diverse settings. We used best practices 
for pharmacoepidemiologic causal estimation by con-
ducting the new user active comparator design [24, 25], 
using LSPS to adjust for directly and indirectly measured 
confounders [46], meaningful comparisons based on 
extensive diagnostics. The integration of negative con-
trol outcomes as a diagnostic tool enhances the study’s 
capacity to identify and assess systematic errors within 
its design. Furthermore, a meticulous clinical charac-
terization of patients with non-infectious uveitis was 
undertaken, ensuring the validity of the outcome cohort 
definition, with the added credibility of an ophthalmolo-
gist’s review. The study also performed thorough charac-
terization of exposure within indication populations.

Despite its strengths, we acknowledge several limita-
tions that warrant consideration. Data quality and clini-
cal event misclassification concerns arise in repurposing 
administrative data and electronic health record data for 
clinical research. Data quality was assessed during data 
standardization to the OMOP CDM [31, 73] and through 
explicit data quality assessment [74] and deemed suf-
ficient for clinical research purposes. For the key study 
population and outcome variables we followed rigor-
ous phenotype development and evaluation processes 
[39–41], that have been applied elsewhere in the observa-
tional research literature [75, 76].

The clinical community and literature in the field 
acknowledges that disease severity and reasons for treat-
ment switching to biologics are important patient char-
acteristics that may confound these exposure-outcome 
relationships. These characteristics are poorly recorded 
or absent from the data we used, but we sought miti-
gate this limitation by two methods. We employed LSPS 
methodology which balances all observed and indi-
rectly measured baseline covariates. Also, we employed 
empirical calibration that measures and calibrates effect 
estimates for residual bias after other bias mitigation 
strategies like PS matching were conducted.

Notably, while we quantified outcome misclassifica-
tion during phenotype development and evaluation, we 
did not correct effect estimates for this source of bias. 
Further we did not calculate misclassification errors by 
exposure status. However, if we assume the high specific-
ity is non-differential to exposure status, this suggests the 
effect estimate would be minimally biased from outcome 
misclassification [42, 77]. When outcome specificity 
depends on exposure status, bias could be considerable, 
especially in low outcome prevalence settings [78].

Also, attrition to the after matching cohort by exclud-
ing non-PS matched patients poses a potential threat to 
external validity, raising concerns about the generaliz-
ability of results to Remicade®-exposed populations as 

initially defined, as well as power to detect safety effects. 
Due to the attrition, we performed characteristic com-
parisons between the initial and after-matching target 
cohorts that demonstrated similarity suggesting general-
izability, although this finding is supportive of our ATO 
estimate targeting the ATT. Alternatively, ATT weights 
would target the ATT without needing to demonstrate 
representativeness, given that no treated patients are 
excluded using this method. However, methods evalua-
tion work using average treatment effect (ATE) weights 
demonstrated poor coverage, increase risk on negative 
controls [63] and imprecise estimates [79] likely because 
of the presence of extreme weights. Other weight-
ing methods that are less prone to influence of extreme 
weights, such as fine stratification weights [80], would be 
a useful direction for future research.

Additionally, in this study, a condition for causal infer-
ence, and in turn for the results from a database to be 
included in the meta-analysis, was that both target and 
comparator cohorts each had at least one event observed 
during their respective TARs. Exploration of novel meta-
analysis methods capable of relaxing this constraint is 
recommended [81]. For example, a Bayesian random-
effects meta-analysis that uses non-normal likelihood 
approximations can reduce bias and increase precision of 
the treatment effect in future multi-database studies fac-
ing low and zero event counts.

Lastly, our use of LSPS was intended to balance all 
observed baseline covariates, of which a subset are likely 
confounders that if imbalanced would lead to biased 
effect estimates. However, this method requires that 
many baseline covariates that are not confounders to 
be similarly balanced given their likely association with 
unobserved confounders [46]. It is possible that some 
analyses that failed the covariate balance diagnostic were 
from imbalanced covariates that would not otherwise 
bias the effect estimate.

Conclusion
We conducted a comparative cohort across five data 
sources and four indications intended to estimate the 
causal association between Remicade® and NIU. We 
applied best practices methods for PS adjustment and 
unobserved confounding control. Three quarters (76%) 
of the total primary and secondary analyses failed to 
pass the pre-specified diagnostic thresholds, so we did 
not review the effect estimates because we could not 
interpret these results as causally valid. In our primary 
analyses that passed validity diagnostics, we failed to 
reject the null hypothesis of no effect and conclude that 
we observed no strong evidence of an increased risk of 
NIU among new users of Remicade® in the IBD and RA 
study populations relative to their respective comparator 
exposure cohorts. We observed consistent clinical results 
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in or secondary analyses that passed diagnostics We note 
that our final estimates were imprecise given the rarity of 
NIU occurrence, but as data accrue, we could foreseeably 
re-execute our repeatable, reproducible study to poten-
tially increase estimate precision.

Generating reliable causal evidence from an obser-
vational study is possible and the study’s quality is 
improved by explicitly acknowledging its causal intent 
[82]. We assert that the causal evidence in this case study 
and other similar observational, comparative effect esti-
mation studies (e.g., [19, 20, 83–88]) is strengthened by 
the application of these validity diagnostics. We further 
believe that the reliability of observational causal evi-
dence can only be confirmed through the transparent, 
rigorous application of these diagnostics. We believe 
that the credibility of casual inference in observational 
data depends on it. We share the conviction of regulatory 
authorities that properly conducted observational stud-
ies can produce comparative safety and effectiveness evi-
dence of sufficient quality to complement evidence from 
RCTs and inform regulatory decisions [8, 14–16, 89, 90]. 
The limitations of RCTs are well-established [91]. This 
presents an opportunity for observational researchers to 
fill evidentiary gaps where RCT evidence is infeasible, 
unethical, inapplicable, or otherwise unavailable.
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