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Abstract
Background Electronic medical records (EMR)-trained machine learning models have the potential in CVD risk 
prediction by integrating a range of medical data from patients, facilitate timely diagnosis and classification of CVDs. 
We tested the hypothesis that unsupervised ML approach utilizing EMR could be used to develop a new model for 
detecting prevalent CVD in clinical settings.

Methods We included 155,894 patients (aged ≥ 18 years) discharged between January 2014 and July 2022, from 
Xuhui Hospital, Shanghai, China, including 64,916 CVD cases and 90,979 non-CVD cases. K-means clustering was used 
to generate the clustering models with k = 2, 4, and 8 as predetermined number of clusters k = 2, 4, and 8. Bayesian 
theorem was used to estimate the models’ predictive accuracy.

Results The overall predictive accuracy of the 2-, 4-, and 8-classification clustering models in the training set was 
0.856, 0.8634, and 0.8506, respectively. Similarly, the predictive accuracy of the 2-, 4-, and 8-classification clustering 
models in the testing set was 0.8598, 0.8659, and 0.8525, respectively. After reducing from 19 dimensions to 2 
dimensions by principal component analysis, significant separation was observed for CVD cases and non-CVD cases 
in both training and testing sets.

Conclusion Our findings indicate that the utilization of EMR data can support the development of a robust model 
for CVD detection through an unsupervised ML approach. Further investigation using longitudinal design is needed 
to refine the model for its applications in clinical settings.
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Introduction
Cardiovascular diseases (CVD) are the leading cause of 
death globally, accounting for approximately18  million 
deaths annually [1], and this number is expected to rise 
to 23.6  million by 2030. In China, two out of every five 
deaths are attributed to CVD, affecting an estimated 
330  million people [2]. Traditional statistics-based pre-
diction tools for future CVD [3], such as the Framingham 
Risk Score [4], Systematic Coronary Risk Evaluation [5] 
and QRISK scores [6, 7], are commonly used in primary 
prevention settings. However, these methods use a com-
mon set of risk factors and the overall accuracy remains 
unsatisfactory and limited application for early detection 
[3, 8]. Clinicians diagnose CVD by evaluating the clini-
cal symptoms and signs of patients and using auxiliary 
diagnostic methods, such as blood tests and imaging 
(non-invasive and invasive) examinations. These proce-
dures are expensive, time-consuming and often requires 
specialized expertise. Asymptomatic individuals may be 
overlooked during routine physical examinations or hos-
pitalization for other unrelated diseases. An automated 
CVD detection tool that help identify high-risk individu-
als quickly and accurately is needed.

Machine learning (ML), a technique used to realize 
artificial intelligence, broadens the scope of traditional 
statistics by identifying nonlinear relationships and 
higher-order interactions among numerous variables. 
It can be categorized into supervised and unsupervised 
learning [8]. Supervised ML build models by associating 
a certain set of features with known outcomes (labeled 
data) to predict outcomes for new data, including naive 
Bayes, random forest, Logistic regression, support vector 
machines (SVM), K-Nearest Neighbor (KNN), artificial 
neural network [9] and genetic algorithm [10]. Unsuper-
vised ML, on the other hand, focuses on identifying the 
underlying patterns in unlabeled data, including cluster-
ing, association and dimensionality reduction. Cluster-
ing analysis is a process that involves the identification 
of distinct subgroups within extensive and intricate data. 
K-means clustering is unsupervised approach to group 
objects into K number of clusters number of clusters 
based on their features. This technique ensures that 
each data point assigned to a specific cluster is in closer 
proximity to the centroid of the cluster compared to all 
other clusters [11]. Dimension reduction is a process of 
reducing high-dimensional data to a low-dimensional 
representation is achieved while preserving the inherent 
changes and structures in the original full-dimensional 
data. A recent study [12] employed unsupervised ML 
approach, specifically multiple kernel learning-based 
dimension reduction and K-means clustering, to com-
bine echocardiographic data and clinical parameters to 
phenotype heart failure patients.

ML has been increasingly utilized to improve the 
accuracy and speed of CVD prediction and diagnosis 
[13]. Nevertheless, the majority of ML-based predic-
tion models are built on community-based populations 
that share similar features [14–17], and the prevalence 
and severity of CVD may also affect the models’ accu-
racy, limiting their clinical application [8]. Importantly, 
electronic medical records (EMR) as a digital version of 
paper records were initially introduced in hospitals to 
improve healthcare efficiency and promote patient care. 
EMR contain a wide variety of data, such as demograph-
ics, diagnoses, medications, laboratory and imaging tests. 
With the growing availability of rich and large sample 
size data recorded in EMR, there is growing interest to 
translate these data into clinical practices through the 
application of ongoing machine learning and AI advance-
ments [18]. EMR-trained ML models have the potential 
in CVD risk prediction by integrating a range of medical 
data from patients, facilitate timely diagnosis and classifi-
cation of CVDs [19]. Nevertheless, there have been lim-
ited study conducted on the EMR data for constructing 
CVD prediction models [20, 21].

Thus, using EMR data, we employed K-means cluster-
ing and Bayesian theorem to construct a model that can 
accurately identify the patients with high probability of 
having CVD in clinical settings. K-means clustering was 
utilized to generate the clustering models, and Bayesian 
theorem was utilized to estimate their predictive accu-
racy. Our work provides an example demonstrating the 
application of EMR-based ML to develop a prediction 
model for assessing the likelihood of having the CVD.

Methods
Data source
The study obtained data from the electronic medical 
record (EMR) system and clinical laboratory informa-
tion system (LIS) of Xuhui Central Hospital, an affiliate 
of Fudan University in China. The data consisted of diag-
nostic information and laboratory test results for adult 
patients who were discharged from January 2014 to 
July 2022. This study was performed in accordance with 
the guidelines of the Declaration of Helsinki. The study 
design was approved by the Ethics Committee of Shang-
hai Xuhui Central Hospital (approval no: 2023033), and 
the institutional review board waived the requirement to 
obtain the informed consent. The medical record num-
ber, gender, age and ICD-10 diagnostic information were 
extracted from the EMR system using SQL statements. A 
total of 155 894 patients were included.

The primary outcome of this study was determining 
the presence of CVD in each subject. CVD was defined 
based on the primary symptoms outlined in the Inter-
national Classification of Diseases, 10th Revision (ICD-
10) diagnostic information). These symptoms including 
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“coronary heart disease arrhythmia”, “coronary artery 
insufficiency”, “coronary heart disease”, “coronary artery 
slow flow”, “coronary artery bypass surgery status”, “cor-
onary artery stent thrombosis”, “coronary artery stent 
implantation status”, “coronary artery stenosis”, “coronary 
artery fistula”, “coronary atherosclerosis”, “coronary ath-
erosclerotic heart disease” [22]. Patients exhibiting the 
aforementioned symptoms were categorized as cases of 
CVD (n = 64916) (Table 1), while the other patients who 
did not display these symptoms were classified as non-
CVD cases (n = 90979).

We searched the LIS system for various laboratory test 
results upon admission, including total cholesterol (TC), 
triglyceride (TG), high-density lipoprotein (HDL), low-
density lipoprotein (LDL), blood glucose, creatine kinase 
(CK), CK-MB isoenzyme (CK-MB), troponin (Tn), myo-
globin (Mb), angiotensin (I/II), aldosterone, hemorhe-
ology, brain natriuretic peptide (BNP), glycosylated 
hemoglobin (GHB), homocysteine (HCY), tumor necro-
sis factor (TNF), interleukin, C-reactive protein (CRP), 
D-dimer, fibrinogen, creatinine, urea nitrogen, uric acid, 
glomerular filtration rate (GFR), plasma viscosity, eryth-
rocyte aggregation index, hemoglobin, blood sodium, 
blood potassium, and other relevant test results.

Data preprocessing and variable selection
After data cleaning, the incomplete, incorrect, inaccu-
rate, and irrelevant parts of 155 894 patients’ data were 
identified and were replaced, modified, or deleted. Due 
to the inherent characteristics of the mining process, 
the vast majority of data attributes utilized within this 
method were of a quantitative type, specifically integer 
or real number data. The analysis eliminated gender as a 
variable due to its binary nature. The process of select-
ing predictor variables (features) was conducted by three 

medical experts with experience in the diagnosis of CVD 
selected the predictor variables (features) based on com-
prehensive review of relevant literature. Also, features 
with missing data in ≥ 20% of patients were removed, and 
features with missing data for < 20% of the patients were 
subjected to multiple imputation. The features of these 
deletions included angiotensin, aldosterone, brain natri-
uretic peptide, homocysteine, free triiodothyronine, free 
tetraiodothyronine, and thyroid stimulating hormone.

The preliminary list focused on 15 variables that are 
clearly implicated in the pathogenesis of CVD [23], 
including blood lipids (TC, TG, HDL, LDL), cardiac 
markers (CK, CK-MB, Mb, Tn), renal function (creati-
nine, urea nitrogen, uric acid, GFR) and blood glucose 
markers (glucose, GHB). Four additional variables that 
have previously been associated with CVD but lack 
robust clinical evidence, were included in this study. 
These variables included coagulation markers such as 
D-dimer and fibrinogen as well as other biomarkers 
including hemoglobin, blood sodium, blood potassium). 
Finally, 19 features were selected as input for the ML 
algorithm. Table 2 shows the description of selected vari-
ables. Z-score normalization was used to standardize the 
numerical variables.

Statistical machine learning analysis
The entire dataset was randomly split into two non-over-
lapping sets: training set (90%, n = 140304) and testing 
set (10%, n = 15590). We ran our unsupervised ML algo-
rithm on the training set first to generate the prediction 
model (i.e., create clusters), and then tested the models 
using the features of the testing set to assess their ability 
to accurately infer the class labels for the patients in the 
testing set. The estimation of the predictive accuracy of 
the clusters and models was afterwards conducted utiliz-
ing the Bayesian theorem. The dimensionality reduction 
approach of principal component analysis (PCA) was 
additionally employed to reduce the number of features 
from 19 to 2 dimensions in both the training and test-
ing sets. This allowed for the visualization of the sample 
results projected onto the first two components [24]. 
The principal components are the continuous solutions 
derived from the discrete cluster membership markers 
for K-means clustering, PCA can serve as a tool to evalu-
ate the 2-classification clustering model from a different 
angle [25]. The modeling process is depicted in Fig. 1.

K-means clustering and bayesian theorem
K-means clustering was used to classify the data-set 
into a fixed number (K) of distinct clusters. We selected 
k = 2, 4, and 8 as predetermined number of clusters and 
iterated 1 million times to guarantee the stability of the 
results. The input of the model was a normalized vector 
of 19 parameters, and the output was whether CVD was 

Table 1 Data overview of main CVD diseases
ICD-10 code Main CVD symptoms No. of 

patients
I25.104 Arrhythmia type of coronary heart disease 892
I24.800 × 001 Coronary insufficiency 11
I25.901 Coronary heart disease 186
I25.800 × 007 Slow coronary flow 1
Z95.101 Post coronary artery bypass graft status 57
I24.001 Coronary stent thrombosis 3
Z95.501 Post coronary stent implantation status 409
I25.101 Coronary stenosis 169
I25.800 × 005 Coronary artery fistula 7
I25.102 Atherosclerosis 1226
I25.103 Coronary atherosclerotic heart disease 61,951
I25.900 A Coronary ischemia 1
Z98.800 × 403 Post coronary angiography 2
Z95.500 × 002 Post-coronary angioplasty status 1
Total 64,916
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present. We used the characteristics of K-means cluster-
ing to classify the disease, and classify the patients with 
or without CVD into two types for clustering. Ideally, 
patients with CVD should be clustered in several of the 
three clustering models of 2-, 4-, and 8-classification, 
while patients without CVD should be clustered in other 
clusters. However, in reality, it is impossible to achieve 
the ideal state. Our data only covered the major symp-
toms of patients who were diagnosed at a given time in 
the hospital, and they may only represent their occasional 
situation. Furthermore, not all of 19 features are strongly 
related to CVD pathogenesis. In practical situations, the 
more uneven the distribution of CVD and non-CVD 
ratios in each cluster, the better it is for the cluster to 
determine whether CVD is present. The more such clus-
ters there are in the entire clustering model, the better it 
is for the entire clustering model to determine whether 
CVD is present.

The model was constructed to the accurate classifica-
tion of patients, enabling to ascertain their disease status 
(i.e., CVD or non-CVD) with 100% probability. Therefore, 
after calculating the proportion of CVD in each cluster of 
the clustering model, the prediction accuracy of a single 
cluster in the three clustering models was calculated by 
using the inverse probability principle of Bayesian theo-
rem, and then the overall prediction accuracy of the three 
clustering models was calculated by using Bayesian theo-
rem. The predictive accuracy of the clustering model was 

determined by dividing the sum of the size of the bigger 
group in each cluster by the total number of samples. The 
specific method to calculate the accuracy by using Bayes-
ian theorem was as follows:

The predictive probability for each cluster by the Bayes-
ian theorem was:

 
Pn = Xmax

n

Xall
n

Xmax
n refers to the size of the bigger group (CVD cases 

or non-CVD cases) in the cluster, and Xall
n refers to the 

total number patients in the cluster.
The overall prediction accuracy (model performance) 

of our model by Bayesian theorem was:

 
Pall =

∑
n
i=1

Xmax
n

Xall
n

× Xall
n

Xall
all

=
∑

n
1 Xmax

n

Xall
all

Xall
all  refers to the number of all subjects in the sample.
This shows that the predictive accuracy of the cluster-

ing model is determined by dividing the sum of the size 
of the bigger group in each cluster by the total number of 
samples.

Model performance
The predictive probability of detecting the existence of 
CVD for a single cluster was calculated as the number of 

Table 2 Dataset features description
No Feature name Type Description Upper threshold Lower threshold
1 ID Integer Id number
2 Date of Birth Integer Max = 23/04/1906; min = 22/04/1997
3 Gender Integer Men: 1; women: 2
4 Diagnosis Text Text description
5 ICD-10 Code Integer ICD-10 number
6 Total cholesterol (mmol/l) Integer CVD: MEAN = 3.9481; non-CVD: MEAN = 4.3562 5.7 /
7 Triglyceride (mmol/l) Integer CVD: MEAN = 1.3477; non-CVD: MEAN = 1.4385 1.8 /
8 High density lipoprotein (mmol/l) Integer CVD: MEAN = 1.1367; non-CVD: MEAN = 1.1070 / 0.8
9 Low density lipoprotein (mmol/l) Integer CVD: MEAN = 2.0539; non-CVD: MEAN = 2.3502 3.36 /
10 Urea nitrogen (mmol/l) Integer CVD: MEAN = 8.0624; non-CVD: MEAN = 6.7867 8.3 /
11 Creatinine (µmol/l) Integer CVD: MEAN = 92.5623; non-CVD: MEAN = 87.9544 116 /
12 Uric acid (µmol/l) Integer CVD: MEAN = 342.9268; non-CVD: MEAN = 317.6061 429 /
13 Glomerular filtration rate (ml/min) Integer CVD: MEAN = 66.3051; non-CVD: MEAN = 87.03 / 80
14 Blood glucose (mmol/l) Integer CVD: MEAN = 6.3598; non-CVD: MEAN = 6.1572 6.2 /
15 Glycosylated hemoglobin (%) Integer CVD: MEAN = 6.3972; non-CVD: MEAN = 6.4832 6.0 /
16 Creatine kinase (U/L) Integer CVD: MEAN = 92.2079; non-CVD: MEAN = 101.8716 134 /
17 Creatine kinase isoenzyme (ng/ml) Integer CVD: MEAN = 15.3261; non-CVD: MEAN = 16.2749 5.04 /
18 Troponin (ng/ml) Integer CVD: MEAN = 0.0826; non-CVD: MEAN = 0.0485 1.0 /
19 Myoglobin(ng/ml) Integer CVD: MEAN = 73.1981; non-CVD: MEAN = 68.5344 100 /
20 D-dimer (mg/L) Integer CVD: MEAN = 2.0789; non-CVD: MEAN = 2.1586 1.0 /
21 Fibrinogen (g/L) Integer CVD: MEAN = 3.6457; non-CVD: MEAN = 3.7269 4.0 /
22 Hemoglobin (g/L) Integer CVD: MEAN = 116.1850; non-CVD: MEAN = 118.77 150 /
23 Blood sodium (mmol/l) Integer CVD: MEAN = 140.6348; non-CVD: MEAN = 140.9027 145 136
24 Blood potassium (mmol/l) Integer CVD: MEAN = 4.0852; non-CVD: MEAN = 3.9647 5.33.5 3.5
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patients with prevalent CVD divided by the total num-
ber of patients. The predictive probability of detecting 
prevalent CVD in each cluster was obtained from k = 2, 
4, and 8 classifications, respectively. After calculating the 
proportions of CVD and non-CVD cases in each cluster 
from k = 2, 4, and 8 classifications, the predictive accuracy 
of each cluster was calculated by Bayesian theorem. We 
calculated the predictive accuracy (performance) of the 
overall model, which is equivalent to the predictive accu-
racy of all single clusters as shown above.

Comparisons of K-means clustering with other ML 
algorithms
We conducted a comparative experiment with three tra-
ditional ML methods to evaluate the performance of our 
K-means clustering approach. The models included in 
this comparison were SVM, K-Nearest Neighbor (KNN), 
and Logistic regression. After establishing the models, we 
calculated area under the curve (AUC) of the models sep-
arately. Finally, we plotted the Receiver Operating Char-
acteristic (ROC) curve. AUC served as the main indicator 
of model performance.

Fig. 1 Flow chart of ML approach to establish CVD detection model
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Results
Characteristics of study subjects
Of 155 894 patients included, we filtered out 41.64% who 
already experienced a CVD outcome (during or before 
baseline). The remaining patients (90 979) did not experi-
ence any CVD outcome. Coronary atherosclerotic heart 
disease was the most common CVD (61 951 patients), 
followed by atherosclerosis (1 226 patients) and arrhyth-
mia type of coronary heart disease (892 patients). Table 1 
shows the number of patients according to different CVD 
symptoms.

Predictive probability of each cluster in 2-, 4-, and 
8-classification clustering models
K-means clustering was used to classify the patients in 
the training set, with 2, 4, and 8 chosen as the predeter-
mined number of clusters. As shown in Fig.  2; Table  3. 
In the 2-classification clustering model, the predictive 
probability of detecting prevalent CVD in clusters 1 and 
2 were 0.8473 and 0.1384, respectively. In the 4-clas-
sification clustering model, the predictive probability of 
detecting prevalent CVD in clusters 1, 2, 3 and 4 were 
0.4418, 0.1288, 0.8899 and 0, respectively. In the 8-clas-
sification clustering model, the predictive probability of 
detecting prevalent CVD in clusters 1, 2, 3, 4, 5, 6, 7 and 
8 were 0.0938, 0.6252, 0.8958, 0.4400, 0.3333, 0, 0.4271, 
and 0.2056, respectively. For each clustering model, the 

Table 3 Distribution of CVD and non-CVD cases in each cluster with different predetermined number of clusters in the training set
Predetermined No. clusters Presence of CVD Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Total
k = 2 Non-CVD 8402 73,478 81,880

CVD 46,619 11,805 58,424
Total 55,021 85,283 140,304
% of CVD 0.8473 0.1384

k = 4 Non-CVD 3650 72,690 5538 2 81,880
CVD 2889 10,743 44,792 0 58,424
Total 6539 83,433 50,330 2 140,304
% of CVD 0.4418 0.1288 0.8900 0

k = 8 Non-CVD 53,631 4367 4550 14 4 2 3025 16,287 81,880
CVD 5554 7286 39,100 11 2 0 2255 4216 58,424
Total 59,185 11,653 43,650 25 6 2 5280 20,503 140,304
% of CVD 0.0938 0.6252 0.8958 0.4400 0.3333 0 0.4271 0.2056

Fig. 2 Distribution of CVD and non-CVD cases in each cluster with different predetermined number of clusters in the training set
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cluster with the highest probability was the one most 
likely to have prevalent CVD.

The clustering models were further evaluated in the 
testing set. As shown in Fig.  3; Table  4, in the 2-classi-
fication clustering model, the predictive probability of 
detecting prevalent CVD in clusters 1 and 2 were 0.8518 
and 0.1351, respectively. In the 4-classification cluster-
ing model, the predictive probability of detecting preva-
lent CVD in clusters 1, 2, 3 and 4 were 0.4480, 0.1261, 
0.8906, and 0, respectively. In the 8-classification cluster-
ing model, the predictive probability of detecting preva-
lent CVD in clusters 1, 2, 3, 4, 5, 6, 7 and 8 were 0.0916, 
0.6287, 0.8943, 1, 1, 0, 0.4065 and 0.2109, respectively.

It should be noted that in the 4- and 8-clustering mod-
els, two clusters accounting for the majority of the total 
samples provided the main information needed to deter-
mine whether or not CVD was present, whereas other 
clusters accounting for a relatively small proportion of 
the overall samples provided minimal information.

Model performance of 2-, 4-, and 8- classification clustering 
models
Bayesian theorem was used to assess the 2-, 4-, and 
8-classification clustering models’ predictive accuracy as 
the model performance. The overall predictive accuracy 
of the 2-, 4-, and 8-classification clustering models in the 
training set was 0.856, 0.8634, and 0.8506, respectively, 

Table 4 Distribution of CVD and non-CVD cases in each cluster with different predetermined number of clusters in the testing set
Predetermined No. clusters Presence of CVD Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Total
k = 2 Non-CVD 907 8191 9098

CVD 5213 1279 6492
Total 6120 9470 15,590
% of CVD 0.8518 0.1351

k = 4 Non-CVD 377 8105 616 0 9098
CVD 306 1169 5017 0 6492
Total 683 9274 5633 0 15,590
% of CVD 0.4480 0.1261 0.8906 0

k = 8 Non-CVD 5978 476 518 0 0 311 1815 0 9098
CVD 603 806 4381 3 1 213 485 0 6492
Total 6581 1282 4899 3 1 524 2300 0 15,590
% of CVD 0.0916 0.6287 0.8943 1.0000 1.0000 0.4065 0.2109

Fig. 3 Distribution of CVD and non-CVD cases in each cluster with different predetermined number of clusters in the testing set
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while the predictive accuracy of the 2-, 4-, and 8-classi-
fication clustering models in the testing set was 0.8598, 
0.8659, and 0.8525, respectively (Table  5). Here, all val-
ues from the testing and evaluation sets were similar and 

above 0.85, showing that the models had good perfor-
mance in detecting the CVD.

Clustering visualization
Because predictive accuracy was not dependent on the 
number of classifications as above showed, 2-classifica-
tion clustering model is simplified and thus optimal. PCA 
was conducted to reduce 19 dimensions (features) down 
to two dimensions. PCA plots of the samples projected 
onto the first two principal components in the training 
and testing sets are shown in Figs. 4 and 5, respectively. 

Table 5 Comparative model performance in the testing sets
Model ACC
KNN 0.8461
Logistic Regression 0.7992
SVM 0.8194
K-mean 0.8634

Fig. 5 Principal component analysis (PCA) of the testing set. PCA plot with samples plotted in two dimensions using their projections on the first two 
principal components

 

Fig. 4 Principal component analysis (PCA) of the training set. PCA plot with samples plotted in two dimensions using their projections on the first two 
principal components
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Significant separation was observed for CVD cases and 
non-CVD cases in both training and testing sets.

Performance of other models
The evaluation of models of KNN, SVM and Logistic 
regression was based on the testing set, and the results 
are presented in Table 6. The predictive accuracy for each 
model was as follows: K-means clustering achieved the 
highest accuracy of 0.8598, followed by KNN with a pre-
dictive accuracy of 0.846, SVM with a predictive accuracy 
of 0.819, and Logistic regression with a predictive accu-
racy of 0.7992 (Fig. 6).

Discussion
In this study, the data retrieved from the EMR was 
employed to construct a CVD detection model using 
unsupervised ML algorithm and subsequently assessed 
its predictive accuracy using the Bayesian theorem. Our 
study confirms the efficacy of unsupervised ML as a new 
approach for identifying individuals at high-risk of hav-
ing CVD by utilizing routine blood tests conducted dur-
ing physical examinations or hospitalization for other 
medical conditions. This can assist healthcare providers 
in assessing the necessity for additional health examina-
tions or appropriate treatment, thereby facilitating early 

detection of CVD and reducing unnecessary medical 
expenses.

Unsupervised clustering algorithms, which need no 
labeling the input data, have proven to be useful in dis-
ease detection, diagnosis and classification [26]. In a 
recent work, hierarchical clustering analysis was used to 
evaluate numerous clinical variables and discovered new 
clinical phenotypes of atrial fibrillation [27]. The other 
study utilized K-means clustering to detect the varied 
etiology and prognosis of heart failure with preserved 
ejection fraction [28]. Our investigation showed that by 
extracting information from underutilized EMR data, the 
K-means clustering models surpassed the performance 
of SVM, KNN and Logistic regression models, with a 
predictive accuracy of over 85% in both the training and 
testing sets. Our findings suggest that unsupervised ML 
approach may yield novel tools in the detection of CVD 
with high accuracy. Furthermore, since the patient’s data 
may be obtained from the EMR without the necessity of 
gathering additional health information in the context of 
limited medical expenditures, the adoption of this strat-
egy is simple and efficient.

Various CVD guidelines recommend different CVD 
risk prediction tools. The most commonly used tool 
is Framingham risk score, which incorporate age, sex, 
diabetes, smoking, systemic blood pressure, and body 
mass index [29]. The QRISK2 scores, which is another 
frequently used prediction tool, incorporate many fac-
tors such as age, gender, race, blood pressure, diabetes, 
family history of coronary heart disease, chronic renal 
disease, blood lipids, rheumatoid arthritis, medica-
tion use, weight, smoking, etc [30]. However, ML-based 
prediction models often incorporate a diverse array of 
variables. An ML-based model for CVD prediction was 
developed using a dataset from the UK BioBank, which 
consisted of 423,604 CVD-free patients. The model was 
built using 473 variables [31]. However, due to the lack 
of a solid pathological basis and the inability of profes-
sionals to recognize it, this condition is rarely used in 
clinical settings. The 19 variables in our selection from 
EMR data was chosen based on their clinical significance. 
Specifically, TC, TG, HDL, and LDL are key components 
of blood lipid profiles. Glucose and GHB are linked to 
diabetes, whereas creatinine, urea nitrogen, urea nitro-
gen, and GFR are associated with chronic kidney dis-
ease. Mb, Tn, and CK-MB are important in diagnosing 
coronary heart disease since their levels are typically 
elevated in those with acute coronary syndrome. The 
current guidelines incorporate these variables, but do 
not include D-dimer, fibrinogen, hemoglobin, blood 
sodium, and blood potassium [32, 33]. It has been noted 
that the coagulation indicators D-dimer and fibrinogen 
exhibit an elevation during thromboembolism. During 
CVD events, the blood’s coagulation status is shown to 

Table 6 Model performance with different predetermined 
number of clusters in the training and testing sets, respectively
Predetermined No. of clusters Model performance

Training set Testing set
k = 2 0.8560 0.8598
k = 4 0.8634 0.8659
k = 8 0.8506 0.8525

Fig. 6 ROC Curve for KNN, Logistic regression and SVM models
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be hypercoagulable as a result of activation of coagula-
tion mechanisms [34]. Hemoglobin as a indicator for 
blood viscosity, and an increase in blood viscosity has 
been linked to CVD events [35]. Elevated sodium levels 
have an direct influence on the progression of hyperten-
sion, which is considered a notable risk factor for isch-
emic heart disease, stroke, and others [36]. According 
to previous reports, serum potassium levels was associ-
ated with CVD events and mortality [37]. Collectively, 
we believe that these variables may possess some patho-
logical foundations that contribute to the development of 
CVD. Therefore, our model may serve as a useful model 
in assessing the likelihood of having the CVD.

Several limitations should be acknowledged. First, this 
was a cross-sectional analysis of input features and prev-
alent CVD status recorded in EMR, the temporal order 
of causality could not be determined. Second, this was a 
single institution, our models should be externally vali-
dated. In addition, we focused on variables that are often 
recorded in EMR, other major CVD risk factors such as 
BMI and family history of CVD were not incorporated 
in analysis as they are not consistently recorded in EHR, 
however, the prediction accuracy as estimated by Bayes-
ian theory was deemed satisfactory, and thus findings 
should not be severely affected.

In conclusion, this study demonstrates the application 
of a ML approach that integrates K-means clustering and 
Bayesian theorem with EMR data to develop an auto-
mated model for evaluating the likelihood of having the 
CVD. Additional longitudinal investigations including 
more characteristics (e.g., comorbidities, medication use, 
and CVD events) across several institutions are needed 
to improve the model’s accuracy and facilitate its poten-
tial implementation applications in clinical context.
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