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Abstract 

Background The concept of the population is of fundamental importance in epidemiology and statistics. In some 
instances, it is not possible to sample directly from the population of interest. Weighting is an established statistical 
approach for making inferences when the sample is not representative of this population.

Methods The effective sample size (ESS) is a descriptive statistic that can be used to accompany this type 
of weighted statistical analysis. The ESS is an estimate of the sample size required by an unweighted sample 
that achieves the same level of precision as the weighted sample. The ESS therefore reflects the amount of informa-
tion retained after weighting the data and is an intuitively appealing quantity to interpret, for example by those 
with little or no statistical training.

Results The conventional formula for calculating ESS is derived under strong assumptions, for example that out-
come data are homoscedastic. This is not always true in practice, for example for survival data. We propose three new 
approaches to compute the ESS, that are valid for any type of data and weighted statistical analysis, and so can be 
applied more generally.

Conclusion We illustrate all methods using an example and conclude that our proposals should accompany, 
and potentially replace, the existing approach for computing the ESS.

Keywords Weighted statistical analysis, Propensity score, Inverse probability weighting, Survey weights, Indirect 
treatment comparisons

Background
The concept of the population is of fundamental impor-
tance in epidemiology and statistics. For example, it is the 
‘P’ in PICOS statements [1, 2] and is an essential attrib-
ute of an estimand [3]. When making statistical infer-
ences we usually assume that the sample is representative 

of the population of interest. However, this is not always 
the case, and if the sample is clearly unrepresentative 
and statistical analysis is to proceed, methods for popu-
lation adjustment can help alleviate this issue. Statistical 
methods for population adjustment broadly fall under 
two main categories: regression-based methods [4–7] 
and weighting-based approaches [6–10]. We focus on 
the latter, where subjects in our sample are weighted to 
provide the population of interest. Both types of statis-
tical methods require assumptions; for example, when 
using weighting, we require that the covariates’ sample 
space for the population of interest is contained in our 
sample. This is so that, despite the fact that our sample is 
unrepresentative, we are able to allocate subject weights 
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to reproduce (or more pragmatically approximate) the 
population of interest. For an especially simple and arti-
cial example, suppose that a population of interest is 
comprised of equal numbers of biomarker positive and 
negative patients. Further, suppose that biomarker posi-
tive patients are more likely to be present in the sample, 
where we sample twice as many patients of this type. 
In order to obtain a sample that is representative of the 
whole population, we can weight biomarker negative 
patients by twice as much as biomarker positive patients.

Statistical methods for population adjustment using 
weighting methods raise two main concerns: 1) addi-
tional and potentially strong assumptions will in gen-
eral be needed to justify them; 2) they may incur a loss 
of information. The first concern is usually more obvi-
ous, and often the most pressing. This is because the 
assumptions required to perform the adjustment may 
be the most difficult to defend in practice. More spe-
cifically, the statistical modelling usually required to 
compute the weights will often require strong assump-
tions, for example that appropriate covariate effects are 
included. We however focus on the second, more sub-
tle, issue. Therefore, we will assume that the population 
adjustment method is acceptable, but there are concerns 
about the precision of the resulting statistical analysis. 
This is because it would likely have been more efficient 
to sample directly from the population of interest, rather 
than from another population and perform the necessary 
adjustment. If this loss of efficiency is severe then this 
can result in imprecise statistical inferences, for example 
wide confidence intervals and hypothesis tests with low 
power.

The weighting approach to population adjustment 
is established in a wide variety of contexts. For exam-
ple, weighting is used when the proportions of survey 
respondents in some subject groups are different to the 
proportions in the survey design [11–13]. Here we weight 
the survey results in one or more subject groups so that 
they represent the expected numbers of respondents in 
each group and so the population of interest. Propensity 
score weighting is another commonly used weighting 
approach in statistical analysis, which allows for reduc-
tion of the bias in estimates due to confounding and 
performs estimation in particular populations [14–16]. 
Inverse probability weighting [17, 18] is a commonly used 
approach to deal with missing data, where weighting is 
used to reproduce the general population who may, or 
may not, provide outcome data. This approach weights 
the complete cases using the reciprocal of the estimated 
probability of providing data given the covariates, so 
that they are representative of the population. Inverse 
probability of censoring weighting (IPCW) is a closely 
related technique developed to eliminate bias arising 

from dependent censoring [19–21]. Here weighting is 
applied so that the observed survival data are representa-
tive of the population, despite the fact that some subjects 
are censored in this way. IPCW has also been success-
fully applied in treatment switching in clinical trials [22, 
23], where patients in the control group can switch to 
the active treatment group at some point during the fol-
low-up period (e.g. when the disease progresses). These 
control group patients are censored at the time of switch-
ing, and control group patient data are weighted by the 
inverse of their probabilities of not switching, again so 
that the resulting censored data are representative of the 
population.

The weighted data result in a weighted likelihood based 
analysis where correct standard errors can be obtained 
using robust sandwich standard errors or bootstrap-
ping. It is much less obvious how to obtain correct pos-
terior distributions in a Bayesian analysis when using 
weighted samples, so that weighting based approaches 
are most amenable to frequentist analyses. Uncertainty in 
the weights can be taken into account using bootstrap-
ping, where subjects’ weights are estimated within each 
bootstrap replication. Alternatively the uncertainty in the 
weights could be ignored, so that they are treated as fixed 
constants, which is a further approximation that might 
be made to simplify analysis.

The effective sample size (ESS) has been proposed as a 
descriptive statistic that gives an indication of the num-
ber of subjects contributing to the analysis after using 
weighting to perform population adjustment [8, 24, 25]. 
The ESS compares the variances of weighted (population-
adjusted) and unweighted (unadjusted) estimates. More 
specifically, the ESS is computed as the size of a smaller, 
hypothetical, unweighted sample that produces the same 
level of precision for the sample mean as the weighted 
sample [6, 10]. Smaller values of ESS occur when there 
is more variability in the weights used for the population 
adjustment, reflecting a greater population adjustment 
[7]. The effective sample size is easily computed, and so 
has the merits of simplicity and transparency. However, 
it makes assumptions that are likely to be violated in 
practice, and in particular, it assumes the outcome data 
are homoscedastic. This assumption will be clearly vio-
lated in some contexts, such as for survival data, and will 
rarely, if ever, be exactly true.

In this paper, we propose three new methodologies 
for ESS calculation when using weighting approaches 
for population adjustment. The first new method com-
pares the variances of weighted (population adjusted) 
and unweighted (unadjusted) estimates in the same way 
as in the conventional calculation, but where the variance 
of both the weighted and unweighted estimates are com-
puted in a valid way irrespective of the type of data and 
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statistical model. This method is almost as transparent 
as the conventional approach, resolves concerns when 
the conventional approach makes incorrect assumptions, 
and could be used as a quick check that the usual ESS cal-
culation is reasonable. The conceptual difficulty with our 
first new method is that its derivation involves no direct 
argument relating to the size of a smaller hypothetical 
unweighted sample, which might reasonably be consid-
ered to be intrinsic to any definition of the ESS.

The second new method uses re-sampling to calculate 
the variance of estimates from an unweighted sample, 
where we sequentially reduce the sample size until it is 
small enough to provide a greater variance for the esti-
mate than the population-adjusted analysis. We can use 
linear interpolation between the final two sample sizes to 
obtain the required ESS. This method is computationally 
intensive and subject to Monte Carlo error, but its advan-
tage is that it has the sample size of a smaller unweighted 
sample at its conceptual basis, and so avoids the indirect 
nature of the first new method described above. The third 
new method can be used when a closed variance formula 
for the estimate from the unweighted analysis exists, 
where this formula depends directly upon easily com-
puted counts or event rates and possibly other parame-
ters that may be approximated with their estimates. Then 
by applying a scale factor to these counts or rates, we can 
calculate the size of the sample that would be needed to 
give the same level of precision (variance of estimates) as 
the weighted analysis, in a similar way to the second new 
method.

The rest of this paper is structured as follows. In Meth-
ods  section, we explain the conventional ESS formula 
and derive our three new methods to calculate ESS. In 
Results  section, we illustrate the use of all four meth-
ods in a numerical example and present the results. Our 
example involves a weighting based analysis for popu-
lation adjustment, namely Matching-Adjusted Indi-
rect Comparison (MAIC) [6–9]. We summarize with a  
Discussion section.

Methods
In this section, we describe all four methods to calculate 
ESS, including the conventional method and three new 
methods. We assume throughout that we have a sam-
ple of size n, where population adjustment weights, ŵj , 
j = 1, 2, · · · , n , have been calculated. We also assume 
that the method for computing the weights ŵj is satis-
factory so that the weighted sample is representative of 
the population of interest. Our main concern is that the 
population-adjusted statistical analysis, where subjects’ 
data are weighted by their ŵj , incurs a loss of information 

relative to an unadjusted analysis. We seek to quantify 
the amount of information that is retained after weight-
ing using the ESS. In general, the weights will be esti-
mated from a statistical model, and we use the notation 
ŵj to emphasise this.

In some applications of weighted analyses we may have 
different subjects present, and weights ŵj calculated at 
different time points, for example, when using IPCW. 
This complicates matters and the conventional ESS is, 
in any case, hard to apply unless each subject has a fixed 
population adjustment weight. We leave the extension 
of our methods to more complicated settings such as 
these as further work, and we return to this issue in the 
discussion.

Existing approach: The conventional ESS formula
The conventional formula to calculate ESS, which has 
been recommended to use after performing population 
adjustment [8, 24, 25], is derived by comparing the vari-
ance of the weighted sample mean and the unweighted 
sample mean. The resulting ESS is calculated as

We now explain how Eq. (1) is derived to make its 
assumptions explicit. We assume that the outcome data 
are homoscedastic, so that Var(Yj) = σ 2 for j = 1, . . . , n , 
and that the estimand of interest is the population mean. 
For a weighted sample, the variance of the corresponding 
estimate, the weighted sample mean, is calculated as

where in the derivation of (2), we have treated the ŵj as 
fixed constants, and so we have ignored any uncertainty 
(and association with the outcome data) in them. For an 
unweighted sample, the variance of the sample mean is 
calculated as

By equating Eq. (2) with Eq. (3), we solve for n = ESS to cal-
culate the required sample size of a hypothetical unweighted 
sample (i.e. the ESS) to achieve the same level of precision 
as the weighted sample (so that Var(Ȳw) = Var(Ȳu) . This 
almost immediately results in (1).

This derivation of the conventional ESS descriptive sta-
tistic (1) clarifies the main assumptions required when 
presenting it: it assumes independent and homoscedastic 
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outcome data, that the estimand of interest is the (unad-
justed) population mean, and it treats the ŵj as fixed 
constants. This motivates the development of alternative 
methods for computing the ESS below that will be valid 
for other data types and statistical models. When using 
Eq. (1), we will always obtain ESS < n , unless ŵj = c 
for all i, where c is the constant. In this case no popula-
tion adjustment is required and ESS = n. Furthermore, 
the same ESS is obtained for all statistical analyses, for 
example, for different outcomes that use the same set of 
weights. These properties may be appealing due to their 
simplicity but may also be misleading. We return to this 
issue in the next section.

First new method: comparing the variances of adjusted 
and unadjusted estimates
From Eqs. (1), (2) and (3), we can see that an equivalent 
definition of the ESS in (1) is

We propose generalising Eq. (4) by replacing Ȳu with 
θ̂u , the unweighted (i.e. the unadjusted) estimate of the 
estimand of interest, and Ȳw with θ̂w , the corresponding 
weighted (i.e. the population adjusted) estimate. Hence, 
more generally, Eq. (4) becomes

where, unlike Eqs.  4  and 5  is suitable for any type of 
outcome data, estimand, and statistical model. This is 
because, having performed valid unadjusted and adjusted 
analyses and so computed variances of the two estimates 
in (5), this more general definition of ESS is immediately 
applicable. It is also very easily computed.

For example, the estimates θ̂u and θ̂w , and their vari-
ances could be computed using appropriate survival 
models for time-to-event data, logistic regression for 
binary outcomes or even using novel or very sophisti-
cated statistical methods. In general, the estimate θ̂w is 
obtained in the same way as θ̂u , but where subjects are 
weighted by ŵj . This weighting will usually be easily 
implemented because typically, both estimates will be 
from regression models, for which standard implemen-
tations allow weights to be specified. The only potential 
difficulty is that Var(θ̂w) must be computed in an appro-
priate way that respects the fact that the ŵj are not ‘rep-
lication’ or ‘case’ weights; for example, a weight of three 
does not mean that we have three subjects with the same 
data, rather one subject has received this weight in the 
population adjustment. Where available, sandwich/

(4)ESS =
n× Var(Ȳu)

Var(Ȳw)
,

(5)ESS =
n× Var(θ̂u)

Var(θ̂w)
,

robust standard errors will be required to compute 
Var(θ̂w) [6, 10], or bootstrapping can be used [26].

Different models and outcomes will provide differ-
ent values of Var(θ̂u) and Var(θ̂w) when using the same 
dataset and method for population adjustment. Hence 
one consequence of using Eq. (5) is that different values 
of ESS will then be obtained. Furthermore, Eq. (5) pro-
vides no guarantee that ESS ≤ n . Our position is that 
these consequences of using (5) are entirely appropriate 
because the same set of weights may have dissimilar con-
sequences for estimation precision in different statistical 
analyses of the same data. Furthermore, subjects with 
outlying or influential outcomes may receive little weight 
in population-adjusted analyses, where these subjects 
would otherwise have detrimental consequences for pre-
cision of estimates from a statistical model. In that case, 
this adjustment may in fact increase precision. However, 
we suspect that this will rarely occur in practice, and if it 
happens, then a special investigation would be needed to 
provide an explanation. Outliers can create challenges for 
all types of statistical analysis. In particular they can pre-
sent issues for analyses that use weighting-based meth-
ods for population adjustment, because outliers may 
receive unusually large weights.

Despite all its advantages, there is a conceptual concern 
when using Eq. (5). This is because its derivation made 
no direct appeal to the size of a hypothetical unweighted 
sample. The conventional formula (1) is however directly 
based on the consideration of such a sample. The deriva-
tion of Eq. (5) instead took advantage of an alternative 
interpretation of the conventional ESS, involving the var-
iance of estimates from weighted and unweighted analy-
ses, and generalised this to other settings. This approach 
was adopted because this interpretation readily general-
ises. However, since Eq. (5) does not require the notion 
of a hypothetical smaller unweighted sample, some may 
prefer to interpret it as providing a type ‘pseudo’ ESS, 
that is equivalent to the conventional ESS under the 
strong assumptions it requires, that measures something 
more abstract in other settings.

Second new method: re‑sampling with reduced sample 
size
As explained in First new method: comparing the vari-
ances of adjusted and unadjusted estimates  section, our 
first new method is easily computed but makes no direct 
appeal to the size of a hypothetical unweighted sample. 
Interpreting the resulting quantity as a measure of ESS 
is therefore potentially problematic. In this section, we 
propose a computationally intensive alternative approach 
based on a smaller sample that overcomes this potential 
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concern. In this approach, we re-sample the data multi-
ple times to provide robust variance calculations. Specifi-
cally, we follow the procedure below: 

1. We start by re-sampling multiple datasets from the 
entire sample size. This step simply produces boot-
strap samples. Subjects can be randomly re-sam-
pled within each treatment group to maintain the 
original randomisation ratio. We then perform the 
unweighted analysis for each re-sampled datasets, 
producing bootstrap replications of unweighted 
estimates of interest θ̂1,u , θ̂2,u , ..., θ̂B,u , where B is the 
number of bootstrap replications. The sample vari-
ance of the boostrap replications gives an estimate of 
Var(θ̂u) . Step 1 is simply the use of bootstrapping to 
estimate the variance of θ̂u.

2. In most cases where Var(θ̂u) < Var(θ̂w) , we gradu-
ally reduce the sample size of the bootstrap samples 
created in the step 1. We implement this by remov-
ing a random selection of subjects from each treat-
ment arm of the re-sampled datasets. Because the 
bootstrap samples are randomly re-sampled prior 
to undertaking this procedure, more simply, we may 
deterministically remove subjects at the start (or end) 
of the bootstrap replications at each iteration. 

(a) Remove k observations in each arm in each 
bootstrap sample. For example, if there are two 
treatment groups and k = 5, then we reduce the 
bootstrap sample size by 10.

(b) Perform unweighted analysis using the boot-
strap sample with reduced sample size and 
compute the resulting bootstrap replications 
θ̂1,−k ,u , θ̂2,−k ,u , ..., θ̂B,−k ,u.

(c) The sample variance of the bootstrap repli-
cations θ̂1,−k ,u , θ̂2,−k ,u, . . . , θ̂B,−k ,u gives an 
estimate of Var(θ̂−k ,u) , where θ̂−k ,u is the 
unweighted estimate of interest with k observa-
tions removed from each arm in the sample.

  Together, the steps (a) to (c) are simply stand-
ard bootstrapping to compute Var(θ̂−k ,u) , 
where before performing the unweighted analy-
sis, we reduce the sample size of the re-sampled 
datasets. When implementing this approach, 
we must select an appropriate amount to 
reduce the sample size at each iteration. In 
general, the size of the incremental decrease in 
sample size should have a small but noticeable 
impact on precision. For example, decreasing 
the sample size by 1-2% of the original sample 

size at each iteration is likely to be appropriate. 
In this method, the observations are randomly 
removed in each treatment group and the re-
sampled dataset preserves the overall distribu-
tion and characteristics of the original dataset. 
Therefore, the sampling approach we proposed 
is a form of sub-sampling, stratified by treat-
ment group.

3. We repeat steps (a) to (c) but with additional k obser-
vations being removed from each treatment arm of 
each boostrap sample. We recommend using the 
same bootstrap samples as in steps 1 and 2, and 
ensuring that observations removed from the boot-
strap samples at previous iterations are subsets of 
those removed at subsequent iterations, to help 
ensure the resulting variances are monotonic in the 
sample size. This iterative process continues until 
Var(θ̂−l,u) > Var(θ̂w) , where l observations have 
been removed from each arm. The value of Var(θ̂w) is 
then located between the last two values of variance 
obtained.

4. Finally, we use linear interpolation between the two 
corresponding sample sizes and their variances to 
calculate the required sample size for a hypothetical 
unweighted sample that gives the same level of preci-
sion as the weighted sample. This sample size is inter-
preted as the ESS.

In the unlikely event that this variance of unweighted 
entire sample Var(θ̂u) is greater than Var(θ̂w) , we could 
conclude that the population adjustment results in no 
concerns about loss of precision if no further descrip-
tion is considered necessary or a gain in precision is 
considered implausible; otherwise, we could use an 
approach similar to the one above. In the latter approach 
we sequentially increase the size of the unweighted re-
sampled datasets in the re-sampling procedure, and in a 
similar approach, find the size of sample size needed to 
provide an unweighted variance that is equal to Var(θ̂w) , 
and report this sample size as the ESS.

The advantages of this method are that it directly 
appeals to the size of a hypothetical unweighted sample 
and so results in a quantity that can be unequivocally 
interpreted as the ESS, and it is widely applicable. Disad-
vantages include its computational complexity and sen-
sitivity to both Monte Carlo error and the reduction in 
sample size used. In practice, it may be desirable to use 
different increment sizes and random seeds to assess 
these potential sensitivities.
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There are different ways of implementing this type of 
approach. A simple version which avoids the computa-
tional complexity of re-sampling is to randomly remove 
subjects from the original sample, until the variance of 
unweighted sample with reduced sample size is greater 
than the variance of the weighted sample Var(θ̂w) . Then 
in a similar way, use the interpolation to calculate the 
required sample size for a hypothetical unweighted 
sample that produces the value of variance as Var(θ̂w) . 
However, we recommend repeating procedures multiple 
times, and in particular using the proposed re-sampling 
approach, to produce a more robust estimate of the 
variance.

Third new method: Scaling the unweighted variance 
formula with reduced sample size
This section describes our final approach, which has a 
mechanism similar to the previous one. In this section, 
we assume that a simple formula for Var(θ̂u) is available 
that depends upon sample counts and rates and pos-
sibly other parameters that may be approximated with 
their estimates. Such a formula will often be available, for 
example, when the type of outcome data and the statisti-
cal model used when computing θ̂u are of a simple, stand-
ard form.

Then, instead of using re-sampling as in the previous 
section, we apply a scaling factor p to the counts and rates 
in the variance formula. We interpret p as the percent-
age of the original sample size retained in a hypothetical 
smaller sample. We then compute the value of the scal-
ing factor that is needed to obtain Var(θ̂u) = Var(θ̂w) , 
where Var(θ̂u) is obtained after applying the scaling fac-
tor and Var(θ̂w) is computed using the whole sample, and 
call this value p̂ . In situations where the variance formula 
is monotonic in the sizes of the counts and rates, as will 
commonly be the case, the necessary scaling factor p̂ will 
be unique, and we assume this is the case. We then define 
the ESS = np̂ , where np̂ is interpreted as the sample size 
of a hypothetical smaller sample that provides the same 
variance as the weighted sample.

For example, suppose that the outcome is binary, and 
the estimand is the marginal log odds ratio comparing 
two treatment groups A and B. Suppose that the out-
come for the jth patient in the first treatment group is 
YA,j , where YA,j = 1 if the event occurs and YA,j = 0 if this 
does not occur. Similarly, assume that the outcome for 
the jth patient in the second treatment group is YB,j . Also, 
assume that the total number of patients in each treat-
ment group is nA and nB , respectively. Then the standard 
variance formula for the estimated log odds ratio is avail-
able as the sum of the reciprocals of the entries in the 
resulting two-by-two table and is

where θ̂u is now an estimated, unweighted log odds 
ratio. This variance formula depends upon counts from 
the data, and is monotonic in these counts, as required. 
Upon applying the scaling factor p to (6), we obtain

We can then use root finding numerical methods to 
solve (7) for p so that Var(θ̂u) = Var(θ̂w) , and define 
ESS = np̂.

As another example, the variance of an estimated log 
hazard from a Cox model may be approximated by four 
divided by the total number of events [27]. This is another 
formula for Var(θ̂u) that is amenable to this method, 
where we can scale the number of events by p and find 
the value that equates Var(θ̂u) to Var(θ̂w) . Although this 
variance formula is just an approximation, it will likely be 
acceptable in applications.

The advantages of this method, compared to the previ-
ous one that it is conceptually very similar to, are that it 
is not sensitive to Monte Carlo error or the increments 
used. Furthermore, it is not so computationally inten-
sive. However its use relies on there being an appropri-
ate formula for Var(θ̂u) to use. In  situations where such 
a formula is available, we suggest that our third method 
is likely to be considered preferable to the second, but we 
retain our second method because it is widely applicable.

Results
We compute all four measures of ESS methods using the 
numerical example from the NICE DSU Technical Sup-
port Document 18: Methods for population-adjusted 
indirect comparisons in submissions to NICE [6]. This 
simulated example contains two data sets, each corre-
sponding to a randomised controlled trial. The first data-
set is from the ‘company’s trial’, with treatments A and B, 
and the second is from the ‘competitor’s trial’, with treat-
ments A and C. The overall aim is to compare treatments 
B and C, where an indirect comparison is necessary 
because these two treatments are not compared in the 
same trial. We have individual patient data available from 
the company’s trial, but only aggregate-level information 
is available from the competitor’s trial, and the popula-
tions of the two trials differ in an important way. Hence 
a population-adjusted indirect treatment comparison is 
required to make this more equitable. 500 patients are 
enrolled in the AB trial and 300 in the AC trial, and both 
trials use 1:1 randomisation.

This example involves two covariates: age and sex. 
Patients have ages taking integer values, uniformly 

(6)Var(θ̂u) =
1
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.
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distributed between 45 to 75 in the company’s trial and 
45 to 55 in the competitor’s trial. The proportion of 
females is 0.64 in the company’s trial and 0.8 in the com-
petitor’s trial. Binary outcome data were simulated using 
the logistic model

where βB = −2.1 and βC = −2.5 are the conditional (on 
age and sex) treatment effect for a 40-year-old patient. 
From Eq. (8), we can see that age is an effect modi-
fier, because the term (βt − 0.08(ageit − 40))I(t �= A) 
describes how the treatment effects of B and C, rela-
tive to treatment A, depend on age. Furthermore, the 
patients’ ages substantively differ across the two trials, so 
a standard, unadjusted, indirect treatment comparison 
using Bucher’s method [28] would not be equitable.

Some form of population adjustment is therefore 
required to fairly indirectly compare treatments B and 
C, where an additional difficulty is that only aggregate-
level data are available from the competitor’s trial. MAIC 
[6–9] is an established method for performing popula-
tion adjustment in this situation, where weights are cal-
culated for the company’s trial to match its population 
to that of the competitor trial. A weighted analysis can 
then be performed using the MAIC weights to estimate 
the effect of treatment B, relative to A, in the competitor 
trial’s population. This population-adjusted estimate can 
then be used in a standard indirect treatment compari-
son [28], with the estimate of treatment effect reported 
by the competitor trial, to make inferences in the com-
petitor trial’s population.

This MAIC has been described several times previously 
[6, 10] and so we only give brief details here. It is said to 

(8)
logit(pit) = 0.85+ 0.12maleit + 0.05(ageit − 40)+ (βt − 0.08(ageit − 40))I(t �= A).

be anchored [10, 29], because both trials include a com-
mon comparator (treatment A). We follow the recom-
mendation to match only on effect modifiers [6], and so 
on age, where we also match on its squared value so that 
its variance is also matched on [6, 10]. Briefly, this MAIC 

matches the means of both age and age squared, whilst 
requiring that the weights are calculated as the exponent 
of a linear predictor that includes both these covariates.

We show the histogram of the resulting 500 weights 
ŵj which has been scaled to sum to 1 in Fig. 1, where we 
have one weight for each patient in the company’s trial. 
There is considerable variation in the weights but there 
are no obvious outliers. The weights shown in Fig. 1 were 
calculated using the conventional methods described in 
Signorovitch et  al. [8, 9] and Jackson et  al. [10], to bal-
ance the mean covariate values across the two popu-
lations. The the covariates of age and sex differ notably 
across the two populations, but these population differ-
ences are not enormous, and the effects of both covari-
ates in this matching can both be described as moderate. 
A population-adjusted estimate of the log odds ratio, 
θ̂w = −3.2151 , comparing treatments B and A, is 
obtained using a logistic regression of the binary out-
come data on treatment group using the company’s trial 
data, where weights are specified as the MAIC weights. 
A valid sandwich standard error, whose squared value is 
Var(θ̂w) , was computed giving Var(θ̂w) = 0.1628.

The unadjusted estimated log odds ratio, θ̂u = −3.5717 , 
is similarly obtained using an (unweighted) logis-
tic regression on the treatment group, where 
Var(θ̂u) = 0.0653 is reported by standard software. The 

Fig. 1 Histogram of resulting 500 weights for the patients enrolled in the AB trial, using MAIC for population adjustment. The weights shown have 
been normalised to sum to 1
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variance of the population-adjusted estimate Var(θ̂w) is 
notably greater than this, indicating that substantial 
information loss has been incurred when performing the 
population adjustment for the company’s trial data. Our 
intention is now to use our ESS statistics to help us con-
ceptualise how severe this information loss is.

Application of the existing approach
Having computed the 500 MAIC weights ŵj for each 
patient in the company’s trial (Fig. 1), it is straightforward 
to compute the conventional effective sample size using 
the formula (1). This calculation provides ESS=185.6451, 
indicating that after the population adjustment, the 
weighted sample is ‘worth’ around 186 patients.

Although this conventional ESS is easily computed, a 
number of its assumptions are clearly false. Firstly, the 
outcome data are not homoscedastic: from Eq. (8), we 
can see that different patients have different probabili-
ties of an event, so that their binary outcome data do not 
have a common variance. Furthermore, the estimand is 
not the sample mean, rather it is a log odds ratio, esti-
mated using a logistic regression. The conventional ESS 
may therefore be misleading.

Application of approach 2: Comparing the variances 
of estimates
Having computed Var(θ̂u) = 0.0653 and Var(θ̂w) = 0.1628 , and 
noting that the company’s trial includes n=500 patients, 
Eq. (5) is easily computed as ESS = n×Var(θ̂u)

Var(θ̂w)
= 200.5176 . 

This indicates that, after the population adjustment, the 
weighted sample is ‘worth’ around 201 patients.

Application of approach 3: Re‑sampling with reduced 
sample size
We note that the robust standard error resulted in 
Var(θ̂w) = 0.1628 , whereas the unadjusted analysis gave 
Var(θ̂u) = 0.0653 so that the adjusted analysis incurs a 
loss of precision. However, this variance is calculated 
by the standard variance formula for binary outcomes 

reported in the logistic regression model in software. The 
first step of performing this approach is to re-estimate 
the Var(θ̂u) using bootstrapping as described in Step 1 of 
Second new method: re-sampling with reduced sample 
size  section. To ensure numerical accuracy, we use B = 
500 bootstrap samples. We then sequentially reduce the 
sample size until an unweighted analysis results in less 
precision (larger variance) than the weighted analysis, 
and we use interpolation to caclulate the required sample 
size as explained in Step 2 to 4.

There are 500 patients in the company’s trial, so with 
1:1 randomisation, there are 250 patients in each treat-
ment group. In each step, we randomly removed mul-
tiples of five observations from both groups of the 
company’s trial until we obtained a variance larger than 
the variance of estimates in the weighted sample. Hence 
we reduce the sample size by 2% at each iteration. We 
tabulate the variances for the unweighted sample with 
sequentially reduced sample sizes in Table  1. Further-
more, we use Fig.  2 to illustrate the observed trends 
between sample size and variance. As explained in Sec-
ond new method: re-sampling with reduced sample 
size  section, we estimate Var(θ̂u) using bootstrapping, 
giving Var(θ̂u) = 0.0769 . This produces a slightly differ-
ent value compared to the variance Var(θ̂u) = 0.0653 
obtained from the initial unadjusted analysis.

From Table 1 and Fig. 2, we can conclude that the vari-
ance generally increases as the sample size decreases, 
as expected. The variance from the weighted analysis 
Var(θ̂w) = 0.1628 , which is between the unweighted vari-
ances of 0.1572 (with a sample size of 240) and the value 
of 0.1652 (with a sample size of 230). Linear interpola-
tion is used to calculate the required sample size of the 
unweighted sample, which produces a variance of 0.1628, 
as ESS = 233.005. This indicates that, after the popula-
tion adjustment, the weighted sample is ‘worth’ around 
233 patients. It is worth noting that the variance is not 
completely monotonically decreasing as the sample size 
decreases. This is because removing observations may 
change the event rate, and the variance also depends on 

Table 1 This table presents the variances of unadjusted estimates calculated using re-sampling with reduced sample size, for the 
numerical example

The sample size is reduced, in steps of 10, from the initial sample size of 500. The initial value of variance with the entire sample size of 500 is 0.0769, whereas 
Var(θ̂u) = 0.0653 is provided by the unadjusted analysis, this difference is caused by using bootstrapping to calculate the variance

Sample size 500 490 480 470 460 450 440 430 420 410

Variance 0.0769 0.0797 0.0812 0.0828 0.0842 0.0850 0.0864 0.0897 0.0910 0.0899

Sample size 400 390 380 370 360 350 340 330 320 310

Variance 0.0916 0.0950 0.0982 0.1010 0.1021 0.1010 0.1031 0.1065 0.1078 0.1115

Sample size 300 290 280 270 260 250 240 230

Variance 0.1188 0.1230 0.1259 0.1311 0.1410 0.1476 0.1572 0.1652
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this rate, so there is no guarantee of monotonicity. Nev-
ertheless, the variance of the unweighted estimator pre-
dominantly depends on the sample size, as expected.

Application of approach 4: Scaling method with reduced 
sample size
A closed formula for the variance of estimated log OR 
exists for the binary outcomes in this numerical exam-
ple (Eq. 6). We use Eq. (7) and the ‘uniroot’ function in 
R, to solve for the value of p that results in a variance 
of Var(θ̂w) = 0.1628 . This process provides p̂ = 0.401 , 
which is the proportion of observations remaining in 
a hypothetical unweighted sample that produces the 
same variance as a weighted analysis. Finally, the ESS is 

calculated as ESS = np̂ = 200.5178 . This indicates that, 
after the population adjustment, the weighted sample is 
‘worth’ around 201 patients.

Comparing the results
We summarise values of ESS calculated using all four 
methods in Table 2. The ESS calculated from the conven-
tional ESS formula produces the smallest ESS, suggest-
ing that this conventional method might underestimate 
the actual ESS in this numerical example, as previously 
discussed in the literature [7]. The ESS values calculated 
using approach 2 (comparing the variance of estimates) 
and approach 4 (scaling method with reduced sample 
size) are very similar. However, all methods are in broad 
agreement and suggest that around 40% of the informa-
tion from the company’s trial is retained after performing 
population adjustment. This loss of information will have 
consequences for the precision of the indirect compari-
son when applying Bucher’s method using the adjusted 
results from the company’s trial.

It is hard to assess the performance of each method, 
for example, in terms of bias and precision, because the 
ESS is not a model parameter. Rather it is an intuitively 

Fig. 2 This figure shows the variances of unadjusted estimates computed using resampling with progressively reduced sample sizes, it visually 
represents the outcomes shown in Table 1. The coordinates (500, 0.0769) show the sample size and the variance of unadjusted estimates computed 
with the entire sample size of 500, and the coordinates (233.005, 0.1628) show the effective sample size and variance of the weighted analysis

Table 2 Values of ESS calculated using four different approaches 
for the numerical example

Approach Approach 1 Approach 2 Approach 3 Approach 4
Conventional 
ESS formula

Comparing 
the variance

Re‑sampling Scaling

ESS 185.6451 200.5176 233.005 200.5178
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appealing descriptive statistic that captures the amount 
of information retained after population adjustment, that 
is intended to be readily interpretable. However, for our 
example, all four methods produce similar ESS values, 
suggesting that all methods are broadly appropriate.

When applied to our example, the three novel meth-
ods avoid making the most seriously violated assump-
tions required by the conventional method. However we 
have not attempted to take into account the uncertainty 
in the weights. Since all three new methods are based 
upon Var(θ̂w) one way to incorporate, but not neces-
sarily fully accommodate, this uncertainty is to estimate 
Var(θ̂w) using bootstrapping, where the weights are esti-
mated within each bootstrap replication. However the 
uncertainty in the weights was not our primary concern 
in our example, rather the much more serious concerns 
are that the outcome data are not homoscedastic and the 
estimates are not sample means.

Discussion
In this paper, we have developed and applied three new 
methods to calculate the ESS. Our new approaches can 
be used in more general cases where different model-
ling assumptions are made. However, it is challenging 
to evaluate the accuracy of each method because they 
do not estimate a population parameter, instead they 
are merely intuitively appealing descriptive statistics. In 
the numerical example, all methods produced similar 
ESS values, which suggests that all methods are feasible. 
It is also worth noting that the ‘comparing the variances 
method’ (Application of approach 2: Comparing the 
variances of estimates  section) and the ‘scaling method’ 
(Application of approach 4: Scaling method with reduced 
sample size  section) produce very similar ESS values 
for this example. This may be because both approaches 
depend directly on variance calculations using standard 
methods, and so in general can be expected to be in good 
agreement.

All four measures of ESS are intended to give a guide 
to the amount of information available after using a 
weighting-based approach to performing population 
adjustment. In situations where the four proposed meas-
ures of ESS differ substantially, for example if one is 50% 
larger than another, then the reasons for this should be 
investigated. A likely explanation will be that the assump-
tions underlying the existing conventional approach are 
violated, rendering this method unreliable. The second 
approach may also result in a different ESS due to its lack 
of direct appeal to a smaller sample, and so its poten-
tial interpretation as a pseudo ESS. In  situations where 
the ESS metrics differ substantially, the third and fourth 
methods are likely to be considered the most reliable.

Different approaches for computing the ESS have their 
own advantages and drawbacks. As we explained previ-
ously, the conventional ESS formula may produce mis-
leading results when the homoscedastic assumption 
on the outcome is violated. The ‘re-sampling method’ 
(Application of approach 3: Re-sampling with reduced 
sample size section) may be sensitive to the random seed 
used. Furthermore the number of observations being 
removed at each step must be determined, which intro-
duces further sensitivity to choices made by the analyst. 
A more robust calculation of the ESS could be obtained 
by reducing the observations being removed from the 
sample at each step, but the method will then be more 
computationally expensive. The ‘scaling method’ (Appli-
cation of approach 4: Scaling method with reduced sam-
ple size section) can only be used when a closed variance 
formula exists, for example, this would be challenging 
when using sophisticated statistical methods, where 
closed form variance formula may be hard to derive.

The three new methods have been applied when a 
MAIC was used for population adjustment, but they are 
applicable to the other analyses which involve weighting 
for this purpose. This includes, but is not limited to, sur-
vey weighting, propensity score matching, inverse prob-
ability weighting, and inverse probability of censoring 
weighting. The inverse probability of censoring weighting 
complicates matters because then each subject has a dif-
ferent weight at different time points. Our methods could 
be used to compute the ESS separately at different times, 
and we leave the development of ESS calculations for 
very complicated types of weighting schemes as further 
work.

Our four measures of ESS were developed to accompa-
nying weighting-based approaches for performing popu-
lation adjustment that are popular when using frequentist 
methods. An advantage of our second and third measures 
are that they could be used in Bayesian analyses that are, 
for example, popular in Health Technology Assessments. 
This is because, when applying these two methods, vari-
ances of posterior distributions could be used instead of 
the variances of parameter estimates from frequentist 
methods. Our fourth method could also be used in situ-
ations where a formula the posterior variance is available, 
but this is unlikely to be the case in practice.

The effective sample size is conventionally calculated 
when using weighting methods for population adjust-
ment. However, the three new approaches we have pro-
posed could also be used to calculate the effective sample 
size when performing this type of adjustment using 
a regression model. This is because our methods are 
based on the variances of adjusted and unadjusted esti-
mates, which are also available when using regression-
based adjustments. Hence our proposals are much more 
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applicable than the conventional method. In general, we 
can expect a reduction in the effective sample size when 
performing population adjustment. However, there 
might exist unusual cases where this type of adjustment 
can increase the ESS. The conventional ESS formula can-
not capture this, whereas the three new approaches for 
ESS calculation can. This may be regarded as another 
advantage of our proposals.

To summarise, we have developed three new approaches 
for calculating the ESS. They are more applicable than 
the conventional approach. We have illustrated all meth-
ods using an illustrative example and conclude that our 
proposals should accompany, and potentially replace the 
existing approach for computing the ESS when using sta-
tistical methods for population adjustment.
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