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Abstract 

Background  Mendelian randomization is a popular method for causal inference with observational data that uses 
genetic variants as instrumental variables. Similarly to a randomized trial, a standard Mendelian randomization analysis 
estimates the population-averaged effect of an exposure on an outcome. Dividing the population into subgroups 
can reveal effect heterogeneity to inform who would most benefit from intervention on the exposure. However, 
as covariates are measured post-“randomization”, naive stratification typically induces collider bias in stratum-specific 
estimates.

Method  We extend a previously proposed stratification method (the “doubly-ranked method”) to form strata based 
on a single covariate, and introduce a data-adaptive random forest method to calculate stratum-specific estimates 
that are robust to collider bias based on a high-dimensional covariate set. We also propose measures based on the Q 
statistic to assess heterogeneity between stratum-specific estimates (to understand whether estimates are more vari-
able than expected due to chance alone) and variable importance (to identify the key drivers of effect heterogeneity).

Result  We show that the effect of body mass index (BMI) on lung function is heterogeneous, depending most 
strongly on hip circumference and weight. While for most individuals, the predicted effect of increasing BMI on lung 
function is negative, it is positive for some individuals and strongly negative for others.

Conclusion  Our data-adaptive approach allows for the exploration of effect heterogeneity in the relationship 
between an exposure and an outcome within a Mendelian randomization framework. This can yield valuable insights 
into disease aetiology and help identify specific groups of individuals who would derive the greatest benefit from tar-
geted interventions on the exposure.
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Background
Mendelian randomization uses genetic variants as instru-
mental variables to investigate the causal effect of a mod-
ifiable exposure on a health outcome [1]. Randomness in 
the allocation of genetic variants from parent to offspring 
can be exploited in a natural experiment, analogous to 
a randomized controlled trial [2]. Under Mendel’s laws 
of segregation and independent assortment, between-
sibling genetic associations should be unaffected by 
confounding, and so genetic variants should only be 
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associated with traits that they affect. Under the further 
assumption that any causal pathway from the genetic var-
iants to the outcome passes via an intermediate exposure, 
a genetic association with the outcome is indicative of a 
causal effect of the exposure on the outcome [3]. Empiri-
cal investigations have suggested that genetic variants 
behave similarly to randomization at a population level 
for large well-mixed populations [4, 5], meaning that 
Mendelian randomization can be used to make reliable 
causal inferences even in population-based datasets.

Randomized trials typically estimate an average causal 
effect, representing the effect of varying the exposure 
averaged across all individuals in the population [6]. 
However, it may be that the effect of the exposure on the 
outcome differs amongst individuals in the population. 
This is often addressed by performing stratified analyses: 
dividing the population into subgroups and estimating 
separate effects in each subgroup [7]. However, care is 
required, as stratification on a variable that is a common 
effect of two variables (known as a collider) leads to a 
correlation between those two variables within the strata, 
even if they are uncorrelated in the population as a whole 
[8]. Hence, while random allocation in a trial should be 
independent of all potential competing risk factors in 
the overall trial population measured at baseline, strati-
fication on a variable that is an effect of randomization 
can lead to associations with competing risk factors, and 
hence to bias in subgroup estimates (known as collider 
bias). In trials, a sharp division is made between stratifi-
cation on a pre-randomization or baseline covariate, ver-
sus stratification on a post-randomization covariate; the 
latter have been called “improper” subgroup analyses, as 
they are at risk of collider bias [9]. However, in Mende-
lian randomization, as the “randomization” event occurs 
at an individual’s conception, all covariates (except for 
those not subject to the effects of genetic variation, such 
as age, sex, and measures of ancestry) are post-randomi-
zation covariates.

Previous methodological investigations have shown 
that stratification on a covariate can lead to bias in Men-
delian randomization estimates [10, 11], and poten-
tially misleading results due to stratification have been 
observed in applied analyses [12]. Two approaches have 
been proposed for stratification that avoid collider bias: 
the residual method [13] and the doubly-ranked method 
[14]. The residual method first calculates the residual 
from regression of the covariate on the genetic variants, 
and stratifies based on the residual values of the covari-
ate. The doubly-ranked method first divides the popu-
lation into pre-strata based on levels of the genetic 
variants, and then forms strata by picking individu-
als from each pre-stratum based on levels of the expo-
sure. The residual method assumes that the effect of the 

genetic variants on the exposure is linear and homoge-
neous in the population [15], whereas the doubly-ranked 
method makes a weaker ‘rank-preserving assumption’: 
that the genetic variants do not affect the ranking of par-
ticipants according to their levels of the exposure. In the 
context of non-linear Mendelian randomization, where 
we form strata based on levels of the exposure, the dou-
bly-ranked method has been shown to be less sensitive to 
variation in the effect of the genetic variants on the expo-
sure compared to the residual method [16].

In this paper, we extend the doubly-ranked method 
to consider stratification on a covariate, and introduce a 
data-adaptive random forest method that allows feasible 
and efficient investigation of stratum-specific Mendelian 
randomization estimates based on a high-dimensional set 
of covariates. We demonstrate the utility of this method 
in a simulation study, and an applied analysis into the 
effect of body mass index (BMI) on lung function. We 
show that the effect of BMI on lung function varies 
strongly, with negative estimates for most individuals in 
the population, but positive estimates for others. We con-
clude by discussing the relevance of these investigations 
for the design of clinical trials. The code for implement-
ing the effect heterogeneity analysis in MR is available at 
https://​github.​com/​HDTian/​RFQT.

Methods
Modelling assumptions and estimands
Our focus lies on effect estimation conditional on covari-
ate information. These effects are also referred to as con-
ditional average treatment effects (CATE):

where Y(x) represents the potential outcome with the 
exposure level x (following the potential outcome frame-
work [17, 18]), X is the continuous exposure (for binary 
exposure, we define βm = E(Y (1)− Y (0)|M(X) = m) 
accordingly), and M is the high-dimensional covari-
ate [19, 20]. The average causal effect could be modi-
fied by the covariate level m , and hence the CATE given 
M(X) = m is possibly heterogeneous. A non-linear 
causal effect is a special example of heterogeneous effect 
where the exposure level itself acts as an effect modifier.

The general model is expressed as a DAG in the left 
panel of Table  1. It is required that Z is a valid instru-
ment, which means that when M → Y  exists, there is 
no direct causal path from Z to M. Additionally, a path 
Z → M indicates that M is a collider, regardless of the 
specific relationship between X and M. If the covariate M 
is either a collider or a mediator, stratifying naively on M 
will violate the exchangeability assumption, resulting in a 
biased CATE estimator.

(1)βm,δ =
E(Y (X + δ)− Y (X)|M(X) = m)

δ
for δ �= 0

https://github.com/HDTian/RFQT
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The goal of this work is to identify subgroups of the 
population in which the covariate information, M, is 
different and the subgroup-specific instrumental vari-
able estimates (CATE estimates) vary, indicating that the 
causal effect of the exposure on the outcome may vary 
between these subgroups. It is important to note that the 
observed covariates are not necessarily the true effect 
modifiers. There are many reasons why instrumental 
variable estimates may vary, including effect modifica-
tion, mediation, non-linearity, or correlation with some 
unmeasured true effect modifiers: our method is agnos-
tic to the explanation for the heterogeneity between esti-
mates. In particular, the exact definition of the causal 
parameter estimated in each subgroup may vary between 
subgroups. However, we believe that heterogeneity 
between these estimates is meaningful, and represents 
evidence that the effect of the exposure will vary between 
subgroups. The observed covariates are also valuable 
if the objective is to predict the individual effect given 
covariate information.

Collider robust stratification
Collider bias is widespread in the analysis of observa-
tional data and is challenging to causal inference [21, 22]. 
Some typical sources of collider bias include: (i) selec-
tion bias occurring when selection into a study sample 
depends on a collider [23]; (ii) survivor bias occurring 
when survival depends on a collider [24, 25]; and (iii) in 
an instrumental variable analysis, conditioning on the 
exposure directly [26], as the exposure is a function of 
the instrument and confounders, and hence a collider. 
Collider bias can also occur in an instrumental variable 
analysis when stratifying on a covariate, if the covariate 
is a function of the instrument and confounders. As the 

exposure is a function of the instrument and confound-
ers, any covariate causally downstream of the expo-
sure will be a collider. Even if the instrumental variable 
assumptions are satisfied for the population as a whole, 
they are typically invalid within strata of the population 
defined by a collider [10, 11].

The residual stratification method derives the coun-
terfactual value of a covariate M in a parametric model. 
The method assumes that the structural equation for 
the covariate is linear and homogeneous in the instru-
ment Z: M = M(0)+ αZ , where the counterfactual 
variable M(0) can be estimated by taking the residuals 
from regression of M on Z. We then form strata based 
on these residual values M(0). As M(0) is not a function 
of the instrument Z, it is typically not a collider even if 
M is a collider [13]. We note that the usage of the resid-
uals of the instrument-exposure fitting model is com-
mon in instrumental variable analysis, for example, in 
the control function methods for effect estimation [27].

The doubly-ranked method is a nonparamet-
ric stratification method that relaxes the assump-
tions of the residual method. The method has 
previously been described for stratifying on the expo-
sure, in an approach known as non-linear Mendelian 
randomization [14]; we here adapt the method to strat-
ify on a covariate. We assume that the sample size is 
N = 10× K  , and the number of strata desired is two. 
The method is performed by the following steps: 

(1)	 Rank individuals according to their value of the 
instrument, and form K pre-strata of size 10 by strati-
fying on the instrument. Ties are broken at random.

(2)	 Rank individuals within each pre-stratum based on 
their value of the covariate.

Table 1  Possible effect heterogeneity scenarios. The left panel is a directed acyclic graph (DAG) where Z,  X,  Y,  U represent the 
instrument, the exposure, the outcome, and the unmeasured confounders, respectively. M is a variable to be considered. The DAG has 
different possible scenarios, each of which has different arrow directions (or no arrow, denoted by � ) for the X-M and M-Y relationship. 
Our primary simulation study considers covariates corresponding to scenarios 1, 5, 7, and 9. Scenarios 2, 3, 6, and 8 are considered in 
an additional simulation study, presented in Supplementary Text

DAG Scenario X-M relationship M-Y relationship M interpretation Comments

1 X → M M → Y collider and mediator Possible a modifier

2 X → M M ← Y collider Not a modifier

3 X ← M M → Y confounder Possible a modifier

4 X ← M M ← Y N/A Ill-defined acylic graph

5 X → M M � Y collider Not a modifier

6 X ← M M � Y not collider/confounder Not a modifier

7 X � M M → Y not collider/confounder Possible a modifier

8 X � M M ← Y collider Not a modifier

9 X � M M � Y not collider/confounder Not a modifier
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(3)	 Form the two strata by selecting the individuals 
with the same covariate rank range from each pre-
stratum; such that stratum 1 contains the individ-
uals with the lower 5 values of the covariate from 
each pre-stratum and stratum 2 contains the indi-
viduals with the higher 5 covariate values from each 
pre-stratum.

This method stratifies the population using information 
on a covariate under a rank preserving assumption. We 
assume that each individual’s counterfactual values of the 
covariate have the same rank ordering for different val-
ues of the instrument. This assumption is illustrated for 
a dichotomous instrument ( Z = 0, 1 ) in Fig. 1. The black 
line illustrates the distribution of the covariate for those 
with Z = 0 , and the blue line illustrates the distribution 
of the covariate for those with Z = 1 . For instance, we 
consider an individual with Z = 0 and covariate value 
equal to the 10th percentile of the covariate distribution 
for those with Z = 0 . If this individual instead had Z = 1 , 
we assume that their value of the covariate would be at 
the 10th percentile of the covariate distribution for those 
with Z = 1 . The linear and homogeneous model required 
by the residual method is a special case of this assump-
tion. We refer to an individual’s quantile in the relevant 
covariate distribution as their rank index. The rank index 
defines the potential values of the covariate at different 
values of the instrument (all but one of which will be 
counterfactual).

The first step of the doubly-ranked method divides the 
population into pre-strata, such that individuals in the 
same pre-stratum have similar values of the instrument, 
and so ordering by the covariate within the pre-stratum 
approximates the rank index of individuals. By selecting 
individuals according to their rank in the pre-strata, we 

obtain strata with different average levels of the covariate, 
but a wide range of values of the instrument. As the rank 
index is not a function of the instrument, this stratifica-
tion will not induce collider bias.

Assessing heterogeneity in stratum‑specific estimates
Having constructed strata using the residual or doubly-
ranked method, we evaluate a measure of heterogeneity 
across the stratum-specific Mendelian randomization 
estimates. Any valid IV method can be used to obtain the 
IV estimates of the strata formed; we use the IVW 
method in our applications of the method. We calculate 
the association of the genetic instrument with the expo-
sure in stratum k as β̂Xk with standard error σXk , and the 
association of the genetic instrument with the outcome 
in stratum k as β̂Yk with standard error σYk . The stratum-
specific causal estimates are obtained using the ratio 
method as θ̂k =

β̂Yk

β̂Xk
 . Cochran’s Q statistic can be obtained 

as [28–30]

where θ̂ is the inverse-variance weighted average of the 
stratum-specific estimates. Under the null hypothesis 
that the stratum-specific estimates are all targeting the 
same parameter, the Q statistic should have a χ2

K−1 distri-
bution, where K is the number of strata. A higher Q value 
gives stronger evidence of heterogeneity between stra-
tum-specific estimates, therefore indicating greater effect 
modification by the covariate used for stratification. Note 
that the Q statistic can be understood as a component 
of the profile log-likelihood considering the uncertainty 
of the estimated instrument-exposure association and is 
robust to weak instruments [30, 31], which is important 
as weak instruments may be common within strata, due 
to the reduced sample size.

Building a single Q tree
As the covariate information for many applications is 
high-dimensional, stratification on all covariates may 
be infeasible, and data-adaptive methods may be pref-
erable to stratification on a small number of selected 
covariates. As a simple but powerful method, the Q tree 
method can help to build strata considering multiple 
covariates in an agnostic way. When utilizing tree or 
random forest methods, it is crucial to define the rules 
for recursive partitioning that can effectively detect 
and emphasize the heterogeneity related to the spe-
cific aspect of interest in the study [32]. In this context, 
we leverage the collider-robust partitioning approach 
to avoid collider bias in IV analysis. Additionally, we 
incorporate the Q heterogeneity statistics, which have 

(2)Q =

K

k=1

(β̂Yk − θ̂ β̂Xk)
2

σ 2
Yk + θ̂2σ 2

Xk

.

Fig. 1  Diagram illustrating the rank preserving assumption 
for a dichotomous instrumental variable Z with counterfactual 
covariate distributions M(0) (the black group) and M(1) (the 
blue group). The dashed arrow represents the one-to-one 
mapping from the counterfactual covariate value with Z = 0 
to the counterfactual covariate value with Z = 1
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been widely employed to assess heterogeneity in MR 
studies. Starting with the initial node containing all 
participants to be stratified, a Q tree is constructed by 
the following steps: 

1.	 Determine the splitting covariate. We form two 
strata for the present node based on each candidate 
covariate using a stratification method. The splitting 
covariate M for the present node and the splitting 
proportion are chosen to give the greatest Q statistic 
value.

2.	 Split based on the candidate covariate. Two child 
nodes are built based on the selected splitting covari-
ate M and splitting proportion. We then either return 
to step 1 to split each child node, or stop if the stop-
ping rule is met.

The stopping rule is either: (1) the greatest Q statistic 
value is less than 3.84 (the 95th percentile of a chi-
squared statistic with one degree of freedom); (2) the 
size of the child node is less than 1,000; or (3) the sin-
gle node depth is larger than 5. Different values for the 
stopping rule parameters (including maximum depth 
and size of terminal nodes), as incorporated in the 
RFQT software, can be employed depending on specific 
application requirements. We consider three possible 
splitting proportions, expressed as the ratio of the sub-
node sizes: namely, 3 : 7, 5 : 5, and 7 : 3. The end nodes 
are the strata for Mendelian randomization analysis. 
Note that the same splitting covariate may be selected 
multiple times. Such an algorithm is quite similar to 
the simple yet powerful tree method CART (Classi-
fication And Regression Tree), but the splitting and 
stopping rules in our algorithm are based on Q statis-
tic; therefore we call it a Q tree. The algorithm implies 
that different subgroups could have different choices of 
covariate stratification, even within a single Q-tree.

Once we have built a Q tree, it can be used to predict 
causal effects for individuals in the testing subset. This 
is completed by passing this individual down the fit-
ted Q tree. At each branch, the individual will go to the 
sub-strata of which the mean values of M∗ is closer to 
this individual’s M∗ value, where M∗ is the chosen split-
ting covariate for that node. Specifically, the decision 
rule can compare the value of M∗ to the boundary value

where n1 and n2 are the sample size of the lower and 
upper sub-node, respectively; M̄∗

1 and M̄∗
2 are the corre-

sponding mean values of the chosen covariate in the sub-
nodes. Once this individual reaches the end node, the 

(3)
n1M̄

∗
1 + n2M̄

∗
2

n1 + n2

predicted treatment value is the stratum-specific Mende-
lian randomization estimate for that stratum.

An important concept in tree-based estimation is hon-
esty. In honest estimation, separate subsets of the training 
data are used to construct the tree and evaluate the node 
estimates [19, 33]. Honesty leads to favorable properties 
in terms of convergence and inference [19, 20]. However, 
honest estimation may not be suitable for our Q tree. 
This is because when constructing sub-groups within the 
estimation data based on a tree, decision rules typically 
involve covariate stratification, which can introduce col-
lider bias and lead to biased leaf-specific estimators for 
the estimation data. Therefore, we use the subgroups 
generated by the doubly-ranked stratification, where 
the IV assumptions hold and collider bias is avoided, to 
obtain the leaf-specific estimates. For this reason, we 
only consider a limited number of splitting proportions 
for each covariate, to avoid overfitting within the training 
subset.

Building a random forest of Q trees
The random forest is a bootstrap aggregating (bagging) 
method for reducing an estimator’s variance by aggregat-
ing multiple de-correlated trees [34, 35]. To construct a 
random forest of Q trees (RFQT), we first take NB boot-
strap samples of the training subset, where NB is the size 
of the forest. For each bootstrapped dataset, we build a 
Q tree as introduced before, but at each split, only a ran-
dom set of covariates are considered as candidate covari-
ates for that node. In the simulation study and applied 
example, we consider 40% of covariates at each division. 
The RFQT estimate for any individual is the average pre-
dicted value from all the Q trees. The final forest size NB 
is chosen such that the out-of-bag (OOB) error and the 
test error (if applicable) of the RFQT are stable as the 
number of trees increases (see Supplementary Fig. S5). 
Unlike most supervised learning problems, the real data 
in our context do not have relevant labels (i.e. individual-
level causal effects), which means the tuning parameters 
such as NB and the proportion of covariates considered at 
each division cannot be directly determined by the OOB 
or testing subset error. The forest size NB for the real data 
fitting is therefore chosen such that individual predicted 
effects are converged.

Variable importance
Variable importance (VI) measures which covariates con-
tribute to the predictive accuracy of effect estimates. VI 
is an example of a cost-of-exclusion approach and can 
be well-compatible with tree and random forest models 
[36]. The VI measurement in a RFQT is obtained by OOB 
samples from each Q tree bootstrap by the Algorithm 1, 
which is similar to that previously proposed for an 
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interaction tree [37]. In a simulation study, the prediction 
accuracy can be the MSE of the individual-level effect 
estimates. The change of accuracy can be the difference 
between the MSE before and after the permutation. With 
real data, the change of accuracy is replaced by the change 
in effect estimates for the OOB samples after permut-
ing the covariate, compared with using the unpermuted 

sample. That is, D(Am
i ,Ai) =

∑nOOB
j (θ̂mj − θ̂j)

2/nOOB for 
the m-th covariate where θ̂mj  and θ̂j are the j-th individ-
ual effect estimates by using the Q tree Qi with the OOB 
samples BOOB,m

i  and BOOB
i  , respectively; and nOOB is the 

number of OOB samples. More important variables in 
both the simulation and real application should contrib-
ute to a greater change of accuracy.

Algorithm 1 Computing Variable Importance (VI) Measure of RFQT

Permutation test of heterogeneity
We propose two nonparametric permutation test statis-
tics for assessing effect heterogeneity of predicted esti-
mates in the training dataset, accounting for uncertainty 
from the RFQT algorithm. The null hypothesis is that 
all the candidate covariates considered do not modify 
the treatment effect, and so the individual-level pre-
dicted causal effects are not more variable than would be 
expected due to chance alone.

We randomly permute the candidate covariates in the 
training subset to mimic the null scenario. For each per-
mutation, we build the RFQT for the permuted sample 
and derive the test statistics S1 , which is similar to that 
proposed in a previous paper [38],

(4)S1 =
1

NB

NB
∑

i=1

Ki
∑

k=1

ni,k

n

(

θ̂i,k −

Ki
∑

k=1

ni,k

n
θ̂i,k

)2

and S2 , which considers variability in the instrument–
exposure association estimates:

where NB is the number of Q trees, n is the training sam-
ple size, ni,k is the size of the k-th end node (strata) in the 
i-th Q tree that satisfies 

∑Ki

k=1
ni,k = n , Ki is the number 

of end strata for the i-th Q tree, θ̂i,k is the MR estimate 
for the k-th end strata in the i-th Q tree, β̂X ,i,k and β̂Y ,i,k 
are the estimated instrument-exposure and instrument-
outcome association respectively for the k-th strata of 
the i-th Q tree. σX ,i,k and σY ,i,k are their corresponding 
standard errors. θ̂i is the inverse-variance weighted aver-
age of the stratum-specific estimates for the i-th Q tree. 
The larger value of S gives stronger evidence to reject the 
null hypothesis. Compared with S1 , S2 is more robust to 

(5)S2 =
1

NB

NB
∑

i=1

Ki
∑

k=1

(β̂Y ,i,k − θ̂iβ̂X ,i,k)
2

σ 2
Y ,i,k + θ̂2i σ

2
X ,i,k
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extreme values caused by weak instruments as it allows 
for the variability in the instrument–exposure association 
estimates.

For each permutation test statistic, we derive the an 
empirical p-value, which is the proportion of permuted 
datasets having a larger value of the test statistic than that 
from the original data, to decide if the candidate covari-
ates as a whole modify the treatment effect.

Reducing variability in stratum‑specific estimates
One notable characteristic of the doubly-ranked 
method is that the stratification results can exhibit 
high variability due to the ranking process. This high 
variability can be mitigated by employing resampling 
procedures, such as random forest, which can help 
stabilize the results. However, when using a one-time 
doubly-ranked stratification approach, this variability 
may impact the results. To address this issue and obtain 
more stable stratum-specific estimates, we utilize a res-
ampling procedure similar to Rubin’s rules [39, 40] to 
reduce the variability and improves the stability of the 
estimated stratum-specific effects.

Given a dataset for fitting, we employ a multiple 
sampling approach where we randomly exclude 10 
individuals in each iteration. This random omission suf-
ficiently alters the individual rank information, conse-
quently affecting the stratification results. Let’s denote 
the total number of sampling times as S. In each sam-
pling iteration, we obtain the stratum-specific esti-
mates: {β̂Xk ,i, σ̂Xk ,i, β̂Yk ,i, σ̂Yk ,i, M̄k ,i; k = 1, . . . ,K } for the 
sampling time i = 1, 2, . . . , S , where M̄k ,i represents the 
average covariate value for the k-th stratum in the i-th 
sampling time. We obtain the pooled point estimator 
for the k-th stratum instrument-outcome association

and its 95% confidence interval, (LYk ,RYk):

where tvk ,α=0.05 represents the 0.975 quantile point of the 
t distribution with vk degrees of freedom, 
vk = (S − 1)(1+

UYk

(1+S−1)BYk
)2 , UYk = 1

S

∑S
i=1 σ̂

2
Yk ,i , and 

BYk = 1
S−1

∑S
i=1(β̂Yk ,i − β̂P

Yk)
2 . We can also obtain simi-

lar pooled estimates for the instrument-exposure associ-
ations. Therefore, we have the stratum-specific pooled 
MR estimates as β̂P

Yk/β̂
P
Xk with the 95% confidence inter-

val (LYk/β̂P
Xk ,RYk/β̂

P
Xk) . The corresponding covariate 

(6)β̂P
Yk =

1

S

S
∑

i=1

β̂Yk ,i

(7)(LYk ,RYk) =

(

β̂P
Yk − tvk ,α=0.05

√

UYk + (1+
1

S
)BYk , β̂

P
Yk + tvk ,α=0.05

√

UYk + (1+
1

S
)BYk

)

value on the x-axis is 1S
∑S

i=1 M̄k ,i . We therefore calculate 
the Q statistic with the pooled estimates as

where θ̂ is the inverse-variance weighted average of the 
stratum-specific pooled estimates. We also test the trend 
association of the pooled stratum-specific estimates 
against the stratum-specific covariate values via meta-
analytic mixed-effects models, where the stratum-spe-
cific covariate values are considered as the moderator 
explaining the heterogeneity [41]. The test can be imple-
mented using the R package metafor [42].

Simulation study
To compare the performance of the stratification methods, 
as well as the RFQT method, we conduct a simulation study 
considering the following data-generating model, where the 
individual index has been omitted for notational brevity,

where Z, X, {Uj} , {Mj} and Y are the instrument, the 
exposure, unmeasured confounders, the candidate 
covariates, and the outcome, respectively. Z ∼ N (0, 12) , 
Uj

i.i.d
∼ N (0, 12) ; ǫX , ǫY ∼ N (0, 12) ; {bj} are the effects 

of the exposure on each candidate covariate; {γj} are 
the modifier effects by each candidate covariate and 
γj

i.i.d
∼ N (γ , 0.12) for j = 1, . . . , 5 , and γj = 0 otherwise. 

That is, the first five covariates are effect modifiers. We 
call γ the strength of modification. Note that even for 
γ = 0 , there is weak effect modification.

We consider three scenarios for the effects of the expo-
sure on the candidate covariates 

A:	bj = 0, j = 1, 2, 3, . . . , 20

B:	bj = 0.5 when j = 2, 4, 6, . . . , 20 and 0 otherwise

(8)

QP =

K
∑

k=1

(β̂P
Yk

− θ̂ β̂P
Xk
)2

[UYk + (1+ S−1)BYk ] + θ̂2[UXk + (1+ S−1)BXk ]
.

(9)X = 0.5Z + 0.5

20
∑

j=1

Uj + ǫX

(10)Mj = bjX +Uj j = 1, 2, . . . , 20

(11)Y =



0.5+

5
�

j=1

γjMj



X + 0.5

20
�

j=1

Uj + ǫY
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C:	bj = 0.1+ 0.5Uj , j = 1, 2, . . . , 20

In Scenario A, all the candidate covariates are not col-
liders. In Scenario B, half of the covariates are collid-
ers, as they are common effects of the exposure and the 
unmeasured confounders. Scenario C corresponds to a 
more complex case in which the effects on the candidate 
covariates are modified by the unmeasured confound-
ers, so both of the assumptions required by the residual 
method and the rank preserving assumption are violated. 
The simulation scenarios can be expressed by the DAG in 
Supplementary Fig. S6, which can represent Scenarios 1, 
5, 7, and 9 of Table 1.

When calculating the mean squared error of predicted 
estimates, we compare the individual-level predicted 
estimates to the controlled direct effects of the expo-
sure for an individual’s values of the covariates: this is 
0.5+

∑5
j=1 γjMj . This is for computational reasons: it is 

simpler to calculate than the total effect of the exposure 
(which is the quantity targeted by the Mendelian rand-
omization estimates), but the quantities should be close 
in practice.

Applied example: body mass index on lung function
In order to implement RFQT in a real application, we 
took data on 167,121 male individuals from UK Biobank 
(Supplementary Fig. S7). A weighted gene score compris-
ing 94 uncorrelated (pairwise r2 < 0.01 ) single nucleo-
tide polymorphisms (SNPs) was used as an instrumental 
variable. These SNPs have previously been shown to be 
associated with BMI at a genome-wide level of statistical 
significance [43]. This genome-wide association study did 
not include UK Biobank participants, thus avoiding bias 
due to winner’s curse [44]. Weights for the gene score 
were obtained from UK Biobank participants. We took 
BMI as the exposure of interest and FEV1 as the outcome 
of interest. We used 27 other distinct variables and the 
exposure itself (to consider a potential non-linear pat-
tern) as candidate covariates.

We took two-thirds of individuals as the training sub-
set and the remaining one-third of individuals as the 
testing subset. For the RFQT method, we chose the 
number of trees to be 200, as it was found that 100-200 
trees was sufficient for converged predicted values. We 
use similar hyperparameters for RFQT as in the simula-
tion study; that is, an end node size of 1,000, a maxi-
mum tree depth 5, and a threshold Q value of 3.84 for 
the stopping rules. For each node in each tree, a random 
subset of 11 variables (i.e. around 40%) were considered 
as candidate splitting covariates. We used the doubly-
ranked stratification method. Variable importance 
measurements were recorded for all the covariates. We 

applied the permutation test for the permutation test 
statistics S1 and S2 by permuting covariate information 
for the training subset 1000 times. The empirical p-val-
ues were 0.058 ( 95% CI: 0.045, 0.074) for S1 and < 0.001 
( 95% CI: 0.000,  0.003) for S2 . The confidence intervals 
are derived by the logistic regression model and the rule 
of three, respectively. The test result suggests that S2 
was a more discriminating measure of effect heteroge-
neity in this example.

Results
Random forest of Q trees method
We assume a single dataset with individual-level data 
on an exposure, an outcome, a genetic instrument, and 
a high-dimensional set of candidate covariates, some of 
which may be effect modifiers. A Q tree is formed by 
recursively dividing the population into groups (Fig. 2). 
At each node, we form two strata based on each covari-
ate in turn, calculate stratum-specific Mendelian rand-
omization estimates, and choose the covariate that gives 
rise to the greatest value of the Q statistic, a measure of 
heterogeneity amongst the stratum-specific estimates. 
We then divide into two nodes based on the stratifica-
tion value of that covariate. We stop when any one of 
the stopping rules is met. We then calculate Mendelian 
randomization estimates in the terminal nodes using the 
ratio method. The causal interpretation of the Mendelian 
randomization estimate is the total effect of the exposure 
on the outcome at the values of the covariates that we 
stratify on, averaged across individuals in that stratum.

To reduce the variance of the estimator, increase stabil-
ity, and smooth decision boundaries [45, 46], we aggre-
gate information from multiple de-correlated trees using 
a random forest of Q trees method (Fig. 3). We divide the 
original dataset into a training subset and a testing subset. 
We then take multiple bootstrap samples of the training 
subset. For each bootstrap sample, we calculate a Q tree as 
described above, except that we only consider 40% of the 
candidate covariates at each node; this reduces correla-
tion between separate trees. We then obtain estimates for 
each individual in the training and testing subsets for each 
tree, and average these estimates across the trees. We also 
calculate variable importance measures for each covariate 
on out-of-bag individuals (i.e. those in the training subset 
who were not selected into the bootstrap sample) averaged 
across trees. and perform a permutation test on estimates 
for individuals in the training subset to assess whether vari-
ability in estimates is greater than would be expected due to 
chance alone. Further details are provided in the Methods.

Simulation study
We perform a simulation study to assess the performance 
of our methods. We consider three scenarios in which 
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the true causal effect of the exposure on the outcome 
varies in the population (see Methods). In Scenario A, 
the effect varies based on covariates that are not collid-
ers. In Scenario B, the effect varies based on covariates, 
some of which are colliders. In Scenario C, the effect var-
ies based on covariates that are colliders in a complex 
and heterogeneous way. We compare three methods 
for forming strata: naive stratification on covariates, the 
residual method, and the doubly-ranked method, and 

two methods for constructing estimates: a single Q tree 
and the random forest of Q trees approach. We also com-
pare results with no stratification. In total, seven meth-
ods are compared across the three scenarios. For each 
method, we calculate the mean squared error (MSE) 
of the individual-level estimates with varying levels of 
effect heterogeneity. The effect estimates are compared 
with effect values calculated from the data-generating 
model. We also calculate variable importance measures, 

Fig. 2  Schematic diagram illustrating the process of constructing a single Q tree. At each node, the covariate with the greatest value of the Q 
statistic is selected. The same covariate is allowed to be selected multiple times at downstream nodes. In each split, two nodes are formed 
according to the values of the covariate selected. The lower/upper M refers to the residual values in the lower/upper quantile region when using 
the residual method, or the lower/upper M samples in each pre-stratum when using the doubly-ranked method. The node will stop splitting 
when it meets any one of the stopping rules: (i) the split will cause the node size to be less than 1000, (ii) the Q-statistic value of the chosen 
covariate is less than 3.84 (the 95th percentile of a chi-squared distribution with one degree of freedom), or (iii) the maximum tree depth 
for the node is larger than 5

Fig. 3  Schematic diagram illustrating the process of constructing a random forest of Q trees. OOB: Out-of-Bag. NB : The number of bootstrap 
samples and Q trees



Page 10 of 16Tian et al. BMC Medical Research Methodology           (2024) 24:34 

and assess whether the true effect modifiers are correctly 
identified. We calculate variable importance measures in 
two ways: first, by comparing changes in MSE obtained 
from effects calculated using the data-generating model; 
and second, based on changes in the predicted effect 
estimates. The second approach reflects typical practice 
outside of a simulation setting, where the true effects are 
unknown.

Results in Fig.  4 show that the stratification meth-
ods performed similarly in Scenario A, as the covariates 
are not colliders, and so are independent of the instru-
ment. The random forest approach outperformed the 

single tree and no stratification approaches. In Scenario 
B, random forests implementing the residual and dou-
bly-ranked stratification methods performed best, as the 
assumptions are satisfied for both methods. In Scenario 
C, the random forest implementing the doubly-ranked 
stratification method performed best at most levels of 
effect heterogeneity, particularly when the heterogeneity 
strength is strong.

The doubly-ranked method with random forest cor-
rectly identified the true effect modifiers, whether vari-
able importance measures were calculated using the true 
effects or not (Supplementary Fig.  S1). A scatterplot of 

Fig. 4  Results of the simulation study showing mean squared error (MSE) of estimates with weak modification (strength of modification = 0.0) 
up to strong modification (strength of modification = 0.5). Top panel: Scenario A (all effect modifiers are non-colliders); middle panel: Scenario B 
(some effect modifiers are colliders); bottom panel: Scenario C (effect modifiers are colliders and influence the causal effect in a complex way). The 
black line represents results with no stratification. In each scenario, data are independently simulated 100 times, and the MSE represents the median 
value across simulations
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the predicted effects against the true effects showed a 
strong correlation (Supplementary Fig. S2).

Stratified estimates for effect of body mass index on lung 
function
We considered data on 167,121 unrelated male par-
ticipants of European ancestries from UK Biobank, a 
population-based cohort study of UK residents ages 
40-69 at recruitment [47], who passed quality con-
trol checks as previously described [48]. Our expo-
sure was BMI, measured at study entry. Our outcome 
was forced expiratory volume in 1 second (FEV1), also 
measured at study entry. Individuals were allowed up to 
three attempts to breathe into a spirometer; the largest 
recorded value was taken as the measure of FEV1. We 
considered 28 candidate covariates, including the expo-
sure itself as a covariate (Supplementary Table S1). Our 
genetic instrument was taken as a weighted score based 
on 94 uncorrelated genetic variants previously shown to 
be associated with BMI at a genome-wide level of sig-
nificance (p < 5× 10−8 ) in the Genetic Investigation of 
ANthropometric Traits (GIANT) consortium, before 
the inclusion of UK Biobank in the consortium [43]. The 
score explained around 2% of the variability in BMI in 
UK Biobank participants. We took two-thirds of partici-
pants as the training subset, and one-third as the testing 
subset, and obtained estimates using the random forest 
approach and the doubly-ranked stratification method, 
averaging over 200 Q trees for bootstrapped samples of 
the training set. All estimates represent change in FEV1 
measured in litres per 1 kg/m2 increase in genetically-
predicted BMI.

A histogram of the individual-participant estimates is 
shown as Fig. 5. We see that the distribution of estimates 
is positively-skewed, with most individuals having a neg-
ative estimate (i.e. higher BMI reduces lung function). 

Some individuals have a slight positive estimate (i.e. 
higher BMI increases lung function), and some individu-
als have a more negative estimate. There was strong evi-
dence indicating that estimates were more variable than 
would be expected due to chance alone ( p < 0.001 , Sup-
plementary Fig. S3).

Variable importance scores for the 28 covariates are 
shown in Supplementary Fig. S4. The covariates with the 
highest scores were diastolic blood pressure, hip circum-
ference, monocyte count and weight. In contrast, height 
was one of the lowest ranking covariates. For eight of 
these covariates, we divided the full dataset into tenths 
based on that covariate using the doubly-ranked method, 
and calculated stratum-specific Mendelian randomiza-
tion estimates within each tenth of the population. Esti-
mates are illustrated in Fig. 6.

We see that stratum-specific estimates for low values of 
hip circumference are compatible with the null, whereas 
estimates for greater values of hip circumference are 
negative, with some statistical evidence for heterogeneity 
in estimates ( p = 0.006 ). This suggests that, for strata of 
the population with narrow hip circumference, BMI has 
a neutral average effect on lung function; but for strata of 
the population with wider hip circumference, increases 
in BMI lead to reduced lung function. A similar pattern 
was observed for weight and BMI. Trend tests indicated 
some evidence for a negative trend in estimates for hip 
circumference ( p = 0.00001 ), weight ( p = 0.002 ), and 
BMI ( p = 0.006 ). In contrast, for height, there was no 
evidence of heterogeneity in estimates across strata, with 
negative point estimates in all strata (although confidence 
intervals overlapped the null for most strata).

More complex stratification patterns can be illus-
trated by plotting a decision tree. The decision tree fit-
ting the covariate information and the predicted effects 
is depicted in Fig.  7. The primary splitting variables for 

Fig. 5  Histogram of the predicted effects of BMI on lung function from the random forest of Q trees approach using doubly-ranked stratification. 
Estimates represent the change in lung function (litres) per 1 kg/m2 higher genetically-predicted BMI
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Fig. 6  Stratum-specific estimates (error bars represent 95% confidence intervals) for the effect of BMI on lung function in deciles of the population 
stratified on covariates using the doubly-ranked method. The Q statistic is a measure of heterogeneity in the stratum-specific estimates. Confidence 
intervals are not corrected for multiple testing
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the main node are hip circumference and diastolic blood 
pressure, which aligns with the variable importance 
analysis.

Discussion
In this paper, we have presented a non-parametric strati-
fication method for Mendelian randomization based on 
a single covariate, the doubly-ranked method. We have 
then incorporated the stratification method into a data-
adaptive approach that provides stratified estimates 
across a high-dimensional set of covariates. We have 
demonstrated the validity of our method in a simulation 
study, and implemented the method to show heterogene-
ity in the effect of BMI on lung function. We have also 
developed measures to assess variable importance, and 
to assess whether variability in individual estimates is 
stronger than would be expected due to chance alone.

Our applied analysis provides intriguing insights into 
the effect of BMI on lung function. A previous Mende-
lian randomization investigation demonstrated nega-
tive effects of BMI on FEV1, as well as other measures 
of lung function, and a positive effect on risk of asthma 
[49]. Another investigation found negative Mendelian 
randomization estimates of BMI on FEV1 that attenuated 

with older age [50]. We were able to show evidence that 
the effect of BMI on FEV1 is decreasing in BMI, but 
that it depends more strongly on hip circumference and 
weight, and less strongly on height. Taking these results 
at face value, this indicates that BMI has a neutral aver-
age effect on lung function in narrowly-built individuals, 
but a negative average effect in more broadly-built indi-
viduals. This is plausible, as the lung function of a slim-
mer individual may benefit from additional mass which 
increases physical lung capacity. However, lung function 
is likely to be impaired by additional mass for a plumper 
individual, particularly if the additional mass represents 
fat mass rather than muscle mass.

More generally, our method could have applications 
for understanding disease aetiology, particularly for the 
effects of complex traits that have competing effects 
on an outcome. There are also potential applications in 
terms of public health, to identify groups of the popula-
tion who would benefit from an intervention, and preci-
sion medicine, to identify individuals who would benefit 
from a specific treatment. The latter is most relevant to 
drug-target Mendelian randomization, where the expo-
sure represents a target for pharmacological interven-
tion [51, 52]. While ultimate arbiter of causation is the 

Fig. 7  Decision tree illustrating the strata constructed by the random forest method, and the splitting criterion at each node. Values in boxes 
represent the average predicted treatment effect for individuals in the given node, and the proportion of the overall testing subset in that node
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randomized trial, trials are expensive and slow to run. 
Our investigation can help guide trial design to focus on 
recruiting the most relevant population subgroups. Addi-
tionally, results of subgroup analyses in randomized tri-
als are often controversial. Given the number of possible 
subgroup analyses that could be chosen, subgroup analy-
ses can be subject to selective reporting and multiple 
testing [53]. Our method could be used to validate find-
ings from subgroup analyses of randomized trials.

While the approach for stratification that we present 
has some novel aspects, it is a development of estab-
lished techniques. Classification and regression trees, 
similar to the Q tree considered here, are a staple method 
of machine learning [35], and random forest of interac-
tion trees have been considered previously for investi-
gating effect heterogeneity in clinical trials [37, 54] and 
in Mendelian randomization [38]. Tree-based methods 
for causal inference, such as causal trees or causal for-
ests, have been developed for observational studies [19, 
20]. These methods typically assume the unconfounded-
ness condition [55], which means that all confounders are 
measured. In situations where confounding is a concern, 
instrumental variable (IV) methods can provide a natu-
ral solution. Recently, a forest for IV regression has also 
been discussed [32]. However, when dealing with com-
plex scenarios where some effect modifiers may be down-
stream effects of the exposure, the current causal (or IV 
regression) tree and forest methods may not adequately 
address collider bias and could produce severe estimation 
bias, particularly if the variables used for splitting in the 
tree are either colliders or mediators between the expo-
sure and the outcome [33]. The Q tree that we present 
is conceptually identical with other tree-based methods, 
but differs in its implementation as it is based on a Q sta-
tistic. The Q statistic allows a more flexible comparison 
of stratum-specific estimates, for example, to account for 
variability in the genetic effect on the exposure, as well as 
differential precision in stratum-specific estimates. The 
measures of variable importance and the permutation 
test that we developed in this work based on Q statistics 
performed well in the context of our examples.

Whereas the performance of most machine learning 
algorithms can be assessed directly in a testing subset, 
individual-level causal effects cannot be known outside 
of a simulation setting. This is in contrast to a typical pre-
diction problem, where we can compare the predicted 
values of the outcome to its observed values. As the indi-
vidual-level causal effects cannot be observed, we cannot 
know how well the random forest approach performs in 
a real-data example, as we do not know the ground truth. 
This means that hyperparameters, such as the minimum 
size of terminal node, cannot be optimally tuned to a par-
ticular applied dataset. However, in the simulation study, 

the variable importance measures were able to identify 
the key effect modifiers even without knowledge of the 
true effects.

There are several methodological limitations to this 
work. First, we create a random forest, averaging over 
trees that divided the population based on different 
covariates. While this approach will generally result in 
improved performance when the causal effect of the 
exposure depends on several covariates, it will per-
form less well if there is only one true effect modifier 
compared with a simpler approach stratifying on that 
covariate. Second, in calculating Mendelian randomiza-
tion estimates, we make several assumptions in terms 
of linearity and homogeneity (or monotonicity) within 
strata. As Mendelian randomization estimates repre-
sent the impact of a lifelong shift in the distribution 
of an exposure [56], we generally do not encourage an 
overly literal interpretation of Mendelian randomiza-
tion estimates as causal effects that are achievable in 
practice [57]. Additionally, Mendelian randomization 
estimates may depend on the specification of the Q 
tree, the causal interpretation of the Mendelian rand-
omization estimate depends on the choice of stratify-
ing covariates. We assume that the relative magnitude 
of different Mendelian randomization estimates in 
subgroups is indicative of the relative magnitude of 
the effect of intervention on the exposure in the same 
subgroups in practice. Third, all the covariates that 
we have considered are continuous variables. While 
the doubly-ranked method can be used for a discrete 
covariate, caution should be taken, particularly when 
dividing into a large number of strata if the covariate 
takes a small number of values. Fourthly, the doubly-
ranked method makes the rank-preserving assumption, 
which cannot be tested empirically. Finally, as with all 
Mendelian randomization investigations, results are 
dependent on the validity of the genetic variants as 
instrumental variables.

There are also limitations to the applied analysis. As 
with most cohorts, UK Biobank is known to suffer from 
selection bias, the magnitude of which depends on the 
age of participants [58]. UK Biobank participants of 
working age are more likely to be affluent, early retirees, 
and so the stratification on age at recruitment is likely to 
reflect differences in socio-economic status in addition 
to age. Some individuals were not able to blow into the 
spirometer, or were not able to provide a reliable meas-
ure, and so have been excluded from the analysis; this 
could also lead to selection bias. In order to avoid vari-
ability in estimates due to sex-based differences in the 
distribution of BMI and other anthropometric traits, we 
restricted analyses to include men only. Additionally, to 
avoid population stratification, we restricted analyses 
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to individuals of European ancestries. This means our 
results may not be generalizable to other population 
groups.

In summary, our data-adaptive method can investigate 
effect heterogeneity in the effect of an exposure on an 
outcome in a Mendelian randomization framework. This 
can provide important insights into disease aetiology, and 
into finding groups of individuals who would most ben-
efit from intervention on the exposure.
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