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Abstract

Background: The rising burden of the ongoing COVID-19 epidemic in South Africa has motivated the application
of modeling strategies to predict the COVID-19 cases and deaths. Reliable and accurate short and long-term
forecasts of COVID-19 cases and deaths, both at the national and provincial level, are a key aspect of the strategy to
handle the COVID-19 epidemic in the country.

Methods: In this paper we apply the previously validated approach of phenomenological models, fitting several non-
linear growth curves (Richards, 3 and 4 parameter logistic, Weibull and Gompertz), to produce short term forecasts of
COVID-19 cases and deaths at the national level as well as the provincial level. Using publicly available daily reported
cumulative case and death data up until 22 June 2020, we report 5, 10, 15, 20, 25 and 30-day ahead forecasts of
cumulative cases and deaths. All predictions are compared to the actual observed values in the forecasting period.

Results: We observed that all models for cases provided accurate and similar short-term forecasts for a period of 5
days ahead at the national level, and that the three and four parameter logistic growth models provided more
accurate forecasts than that obtained from the Richards model 10 days ahead. However, beyond 10 days all models
underestimated the cumulative cases. Our forecasts across the models predict an additional 23,551–26,702 cases in 5
days and an additional 47,449–57,358 cases in 10 days. While the three parameter logistic growth model provided the
most accurate forecasts of cumulative deaths within the 10 day period, the Gompertz model was able to better
capture the changes in cumulative deaths beyond this period. Our forecasts across the models predict an additional
145–437 COVID-19 deaths in 5 days and an additional 243–947 deaths in 10 days.

Conclusions: By comparing both the predictions of deaths and cases to the observed data in the forecasting period,
we found that this modeling approach provides reliable and accurate forecasts for a maximum period of 10 days
ahead.

Keywords: Phenomenological models, COVID-19, Prediction, Richards model, Logistic growth model

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: tarylee.reddy@mrc.ac.za
†Tarylee Reddy and Ziv Shkedy are Joint first-author.
1Biostatistics Research Unit, South African Medical Research Council, Cape
Town, South Africa
2Censtat, Hasselt University, Hasselt, Belgium
Full list of author information is available at the end of the article

Reddy et al. BMC Medical Research Methodology           (2021) 21:15 
https://doi.org/10.1186/s12874-020-01165-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-020-01165-x&domain=pdf
http://orcid.org/0000-0002-9521-2692
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:tarylee.reddy@mrc.ac.za


Background
Coronaviruses are a large family of viruses which may
cause respiratory infections ranging from the common
cold to more severe diseases such as Middle East Re-
spiratory Syndrome (MERS) and Severe Acute Respira-
tory Syndrome (SARS). The ongoing outbreak of the
novel coronavirus (SARS-CoV-2) was first detected on
31 December 2019 in Wuhan, China. In the past 6
months the virus has rapidly spread to all regions with a
total of 9,347,168 confirmed cases and 478,888 deaths as
of 22 June 2020 [1].
The first COVID-19 case was reported in South Africa

on 5 March 2020. By 22 June, 2020, South Africa had
the highest burden of COVID-19 cases in the African re-
gion with 101,590 reported cases and 1991 confirmed
COVID-19 related deaths. The South African govern-
ment declared a national state of disaster on 15 March
2020 and commenced a state of lockdown from 26
March 2020 in an effort to reduce COVID-19 transmis-
sion in the country [2]. During this period all international
and inter-provincial borders were closed, as well as all
schools and several economic sectors in the country. In
addition to these changes, non-pharmaceutical interven-
tions such as the mandatory use of fabric masks, contact
tracing and community testing were implemented across
the country. As of June 2020, the country adopted a
COVID-19 risk-adjusted strategy with a phased re-
opening of selected economic sectors and schools. Due to
the unprecedented nature of the situation, the uncertain-
ties about the disease and the need to make informed pol-
icy decisions, modelling has taken centre stage in
supporting key policy discussions surrounding COVID-19
in South Africa [3]. To date, the models that have been
applied to the South African COVID-19 outbreak have fo-
cused on understanding the potential effects of interven-
tions and policies based on SEIR-type models. These
models are a common epidemiological modelling tech-
nique that divides a population into several compartments
according to infection status (Susceptible, Exposed, Infec-
tious, and Removed). Based on assumptions about the dis-
ease process, public health policies, demographic and
mixing patterns among individuals in the population a set
of differential equations governing how individuals in the
population transition from one compartment to another,
are defined and solved. Although these models are useful
in understanding the effect of different factors on the
transmission process and possible intervention strategies,
they are sensitive to the assumptions made and require a
deep understanding of the disease being modelled. The
South African National COVID-19 Modeling Consortium
[4], for example, assumed the following in their SEIR
model: 75% of infected individuals are asymptomatic, the
time from onset to infectiousness is 4 days (2∙0–9∙0), a
5 day duration of infectiousness from onset of symptoms;

a mean of 9 days (8∙0–17∙0) between the time from onset
of symptoms to ICU admission. Based on these assump-
tion and model structure, it was predicted (June 12, 2020)
that the number of detected cases (assuming the current
detection rate of June 12) was 185,000 (89,500 - 358,000)
and 278,000 (132,000 - 535,000) for the 29th of June and
the 6th of July 2020, respectively. The observed number of
cases corresponding to these dates were 144,264 and 205,
721, respectively.
An alternative modelling approach, which is more ro-

bust and notably simpler (as it is not necessarily re-
quired to make assumptions about the transmission
process) is that of phenomenological models. These
non-linear epidemiological models have previously been
applied to model other disease outbreaks such as Ebola
[5], Dengue [6], Zika virus [7] and, more recently, the
COVID-19 pandemic. Specifically, Roosa and colleagues
fitted the generalized logistic model, Richards model and
a sub-epidemic model to the cumulative COVID-19
cases in the Hubei province of China and the rest of
China (excluding the Hubei province) and produced a
short-term forecast of 5, 10 and 15 days ahead [8]. The
authors expanded on this work using the same modelling
approach for the provinces of Guandong and Zheijang [9].
In recent analysis a similar approach was taken to estimate
the key epidemic parameters for all 11 provinces in China
as well as 9 selected countries [10]. All the aforementioned
papers have only focused on modelling cumulative
COVID-19 cases. It can be argued, however, that both
COVID-19 cases as well as COVID-19 deaths are of key
importance in modelling the burden of COVID-19.
In using phenomenological models careful consider-

ation needs to be given to the predictions emanating
from all of the models fitted as such models could be
used to support interventions on containing an epi-
demic. Generally authors select models on one of two
key phenomenological modelling approaches: model se-
lection and model averaging [7]. The former consists of
selection of the model with the best goodness of fit to
the data (and predicting the number of cases and epi-
demiological parameters of interest based on the se-
lected model) and the latter uses information from a
collection of models fitted to the data for prediction and
estimation. The latter approach is a robust method to
handle model uncertainty, particularly when there are
several models which provide similar fits to the observed
data. In the current paper and in the context of COVID-
19 in Sub Saharan Africa we advocate the use of a sensi-
tivity analysis approach for short (and long) term predic-
tion of the number of cases.
In this paper we present (1) South Africa’s COVID tra-

jectory to the first 100,000 (22 June 2020) cases and (2)
fit a series of non-linear growth models, calibrated to
COVID-19 cumulative number of reported case data
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from 5 March 2020 to 22 June 2020. The models are
used to produce short term predictions of the number of
reported cases expected for a period of 30 days ahead.
These forecasts are generated at the national level as
well as at the provincial level for the three highest bur-
den provinces (Western Cape, Gauteng, and Eastern
Cape). In view of the strong dependence of the number
of detected COVID-19 cases and the number of tests
performed, as well as the testing algorithm applied to
the population, we also focus on the modelling of
COVID-19 deaths, which may provide more reliable
insight into the burden of the disease in South Africa.
The short-term forecasts (for a period of 30 days ahead)
of COVID-19 related deaths at a national level (and for
selected provinces) are also studied.
Modelling the COVID-19 outbreak in South Africa

implies modelling a dataset which is updated daily,
which could affect the selection and the associated per-
formance of the model on daily basis. Thus, while the
selection of the best fitting model to the data could be
critical, we illustrate the inherent analytical predictive
problem of choosing a single model for predicting the
future number of cases. Our point of view is that in a
country such as South Africa (and other countries in
Sub-Saharan Africa), where there is uncertainty related
to the true number of cases, a sensitivity analysis based
on multiple models is necessary for both short and long-
term prediction of the number of cases and epidemio-
logical parameters of interest.

Methods
Data
Routine confirmation of cases of COVID-19 is based on
amplification and detection of unique SARS CoV-2 viral
nucleic acid sequences by real-time reverse-transcription
polymerase chain reaction (rRTPCR), with confirmation
by nucleic acid sequencing when necessary [11]. A daily
record of newly diagnosed COVID-19 cases and deaths
were extracted for the period 5 March 2020 to 22 June
2020, at national and provincial level from a publicly
available data repository [12, 13]. Data from the first
110 days of the outbreak (until June 22, 2020) were used
to fit the models.

Statistical analysis
For the analysis presented in this paper, we follow the
modelling approach presented by Roosa et al. [8, 9] and
Sebrango et al. [7] and fit a set of nonlinear growth
models to the total number of reported cases and deaths.
We let Y(t) denote the cumulative number of cases (or
deaths) at time t and μ(t) represent the expected number
of reported cases at time t. For the purpose of this study,
we considered five data driven non-linear growth
models, namely; 3 parameter logistic; 4 parameter

logistic; Gompertz and Weibull growth models, which
are presented in Table 1.
The advantage of using the above models is that their

mean structure μ(t) can be parametrized in terms of the
growth rate, the final size and the turning point of the
outbreak.
For all the models, the parameter α denotes the final

size of the epidemic (i.e., the total number of reported
cases at the end of the epidemic), γ the per capita intrin-
sic growth rate of the infected population, k the expo-
nent of the deviation from the standard logistic curve
and η the turning point (i.e. the time in which the daily
number of cases reach its peak and the half time of the
outbreak). Specifically Wu et al. [14] state that when an
epidemic follows an exponential growth at an early stage
the Richards model may be more suitable and that when
the growth rate slows down (after the turning point) lo-
gistic models may provide a better fit to the data.
In line with approach adopted by [8, 9], the unknown

model parameters were estimated using non-linear least
squares estimation. This is achieved by searching for the
set of parameters that minimizes the sum of squared dif-
ferences between the observed data and the correspond-
ing model solution. All analysis was performed using R
and SAS. For outcomes with a clear biphasic trajectory,
piecewise forms of the growth curves were fitted. The
optimal change point was chosen by iteratively compar-
ing fit criteria of models with different change points,
with the model with the smallest Akaike information cri-
teria [15] selected. In provincial models, the first time
point (day 1) refers to the date at which the first case
was diagnosed in the specific province. To assess the ac-
curacy of the models in predicting cases and deaths, we
present the actual observed values in the forecasting
period for both cases and deaths.

Prediction intervals
For the analysis presented in this paper, our main inter-
est is to use the available data from t = 1 to t = T and to
forecast the total number of cases for the period T + 30
days ahead. We term the period 1 to T the estimation

Table 1 Model formulation for the nonlinear models fitted to
the COVID-19 outbreak data. Note that Y(t) is the daily expected
cumulative number of cases and Y(t) = μ(t) + ε(t)
Model

Richards
μðtÞ ¼ α

�
1þ kexpð − γðt − ηÞÞ

− 1
k
�

3 Parameter logistic μðtÞ ¼ α
1þ expð − γðt − ηÞÞ

4 Parameter logistic μðtÞ ¼ βþ α − β
1þ expð − γðt − ηÞÞ

Gompertz μðtÞ ¼ α0 þ ðα − α0Þ expð − expð − γðt − ηÞÞÞ
Weibull μðtÞ ¼ α0 þ ðα − α0Þexpð − ð t

η ÞkÞ
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period and the period from T + 1 to T + 30 the forecast
(prediction period). To construct prediction intervals
(within and outside the estimation period) we applied a
parametric bootstrap [16] approach which was previ-
ously used to quantify parameter uncertainty and con-
struct confidence intervals in mathematical modeling
studies [17]. In this method, multiple observations are
repeatedly sampled from the best-fit model in order to
quantify parameter(s) and prediction uncertainty by as-
suming that the time series follows a Poisson distribu-
tion centered on the mean at the time points ti.

Results
The daily number of reported COVID-19 cases for the
period 5 March 2020 to 22 June 2020 is presented in
Fig. 1. The growth of COVID-19 in South Africa appears
to be rapid until 27 March 2020 where a total of 243
daily new cases were observed, followed by a decline in
the rate of new cases. From the 28 March 2020 to 11
April 2020 the daily increase in cases was consistently
below 100. From May 2020 onwards a consistent in-
crease more than 1000 cases per day were observed with
larger increments in June.
The daily number of new reported COVID-19 cases

and tests performed are presented in Fig. 2. To date, a
total of 1,353,176 tests have been conducted, corre-
sponding to a testing rate of 22.816 per 1000 population.
There was a significant correlation between the number
of cases detected and the number of tests performed
daily (Rho = 0.7759, p-value< 0.001).
The cumulative COVID-19 cases are depicted separ-

ately for each of South Africa’s nine provinces in Fig. 3,
where a high degree of interprovincial heterogeneity is

observed. As at 22 June 2020 the province with the high-
est number of cases is the Western Cape with 52554
cases, followed by Gauteng and Eastern Cape with 22341
and 16895 cases respectively.
The total deaths reported from the 27 March to 22

June 2020 is presented in Fig. 4. In total 1991 COVID-
19 related deaths were reported in this period with an
overall case fatality rate of 1.96%. The first death was ob-
served in the Western Cape (WC), followed by KwaZulu
Natal (KZN), Free State (FS) and Gauteng Province
(GP). Eastern Cape (EC) recorded their first death on
the 16 April 2020. Initially WC contributed the most to
the deaths as it was the epicentre. The other provinces
curves’ exhibit patterns that are indicative of irregular
reporting, as increases occurred in steps.

Short-term prediction of the total number of reported
COVID-19 cases - a national level analysis
The models described in the previous section were all
considered for modeling cumulative cases, with only
models resulting in convergence further reported on in
the tables. The Richards model, 3 and 4 parameter logis-
tic models were fitted to the total number of reported
COVID-19 cases at national level. The parameter esti-
mates for the different models are presented in Supple-
mentary Table 1. As mentioned in the previous section,
our main interest is to produce a short term forecast for
the number of reported cases and deaths. As depicted
from the short-term forecasts for the three models fitted
to cases (see Fig. 5, Table 2), all three models appear to fit
the observed data (within the estimation period) well with
the 3 parameter and 4 parameter logistic models providing
very similar predictions over the 30-day ahead period. The

Fig. 1 The cumulative COVID-19 cases for the period 5 March 2020 to 22 June 2020
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AIC values are equal to 557, 559 and 555 for the 3PL, 4PL
and Richards models, respectively, indicating that the
Richards model is to be preferred considering in-sample
predictions. However, it is clear from Fig. 5 that outside
the estimation period, i.e., beyond June 22, 2020, the
Richards model fits poorly. The predictive accuracy of the
models to forecast the cumulative cases beyond the esti-
mation period is presented graphically in Fig. 5, by super-
imposing the observed total number of reported cases
(red asterisk) for the period 23 June to 4 July 2020. It is
clear that all models underestimate the cumulative cases
beyond 10 days and we observe that the Richards model
yields substantially wider prediction intervals than the 3PL

and 4PL models. The 5 days forecast (26 June 2020) ob-
tained for 3PL model indicates that we can expect ap-
proximately a 30% increase in the cumulative COVID-19
cases in South Africa relative to 22 June 2020. For July 1,
2020, the 3PL predicts 158,859 (157047–160,633) cases
and the observed number of cases is equal to 159,333. The
prediction of Richards model for this period is 149,039
(143886–153,385). We notice that all the models under-
estimate the number of cases for a period of 30 days
ahead, where the observed cumulative cases were 381,798.
The 3-parameter model provides accurate forecasts

within the first 5 days. However, it is observed that beyond
this point, observed values lie slightly outside of the

Fig. 2 The relationship between daily COVID-19 tests and cases diagnosed for the period 5 March 2020 to 22 June 2020

Fig. 3 The cumulative COVID-19 cases in each of the nine provinces in South Africa for the period 5 March 2020 to 22 June 2020
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prediction interval. This illustrates the need of a real time
forecasting with daily calibration, particularly in the period
approaching the peak where steep (and often random) in-
creases are observed. Supplementary Figure 1 shows the
predicted values and 95% CIs obtained from the three
models for the 5 and 10 day time points. This figure illus-
trates that, while at each forecasting date a different model
may provide an accurate forecast and prediction intervals
which contain the true value, considering a joint predic-
tion interval from all models contains the true value at all
three dates. This interval is computed such that the overall
lower bound is the minimum lower bound of the three
model bootstrap prediction intervals. Similarly, the upper
bound is defined as the maximum upper bound of the
three model bootstrap prediction intervals.

Short-term forecasts of the total number of reported
COVID-19 cases – a province level analysis
As presented in Fig. 3, the outbreak in different prov-
inces does not follow the same pattern and at the time
that this analysis was conducted (June 22, 2020) three
provinces (Western Cape, Eastern Cape and Gauteng)
were responsible for 90.3% of the total diagnosed cases
in South Africa. In this section we present a similar
modeling approach implemented to a province-specific
COVID-19 cumulative case trajectory for the three high-
est burden provinces. Of the four models fitted to the
Western Cape, namely the 3 and 4 parameters logistic,
Weibull and Richards model, the model which provided
the best fit to the data is the 3 parameter logistic regres-
sion model. Due to the significantly slower growth rate
of the outbreaks in the Eastern Cape and Gauteng from
March, 2020 until 22 June 2020, piecewise growth
models were fitted to capture this change point. The

model which provided the best fit to the Eastern Cape
data is the 3-parameter logistic model with a change
point in the growth rate at day 80 (8 June 2020). Simi-
larly, a piecewise 3 parameter logistic model was fitted
to the Gauteng data with a change point at day 87 day (1
June 2020). The 30-day forecast of COVID-19 cases, in
5-day intervals, is presented for each province in Table 3.
On 26 June 2020 (5-day forecast), the predicted number
of cases were 57,481 (95% C. I 57135–58,197), 19,325
(18993–19,716) and 27,930 (27433–28,428) for Western
Cape, Eastern Cape and Gauteng, respectively. The ac-
tual observed number of cases on 26 June 2020 were 57,
941, 21,938 and 31,344 in the Western Cape, Eastern
Cape, and Gauteng, respectively indicative of an under-
estimation of cases in Eastern Cape and Gauteng. Note
that, similar to the total number of cases in the previous
section, this underestimation is more pronounced for a
10 days (1 July 2020) forecast onward, where the ob-
served cases in the Eastern Cape and Gauteng were 29,
340 and 45,944, respectively.

Short term forecasts of the number of COVID-19 related
deaths
As previously mentioned, the total number of cases is
highly correlated to the total number of tests conducted
and therefore can be a misleading indicator to the out-
break progression. For that reason, modelling the total
number of COVID-19 related deaths is of interest. We
considered all the models described in Table 1 in the
modeling of COVID-19 deaths. However, only the 3PL,
Richards model and Gompertz model resulted in con-
vergence and are subsequently reported on. The param-
eter estimates and fit criteria for each of the models
fitted are presented in Supplementary Table A2.

Fig. 4 The cumulative COVID-19 deaths in each of the nine provinces in South Africa for the period 5 March 2020 to 22 June 2020
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According to the AIC, within the estimation period,
the Richards model provided the best fit to the cu-
mulative COVID-19 deaths at the national level. As
with the total number of cases, the Richards model
seems to flatten out prematurely and therefore, al-
though it fitted the data better according to the AIC,
the 3PL forecasts are used in subsequent interpret-
ation. The 30-day forecast of COVID-19 deaths, at
5-day intervals, is presented in Table 4. The pre-
dicted number of deaths on the 26 June 2020 (5 day
forecast) is 2336 (2219.4–2457.2), and the total
deaths is expected to be 2700 (2534.7–2883.6) as at
1 July 2020. The 30-day forecast is subject to a higher de-
gree of uncertainty with 3775 (3346.3–4435.1) deaths pre-
diction. We notice that the 3PL model provides smaller
predictions compared to the Gompertz model but higher
predictions compared to the Richards models. Figure 6
shows the observed deaths and the predictions obtained
from the fitted models, as well as the superimposed

reported deaths for the period 23 June to 4 July 2020. It is
clear from this graph that the model which most closely
captures the trajectory of COVID-19 related deaths in SA,
outside the estimation period, is the 3PL model.
Due to the low COVID-19 death rate in South Africa,

the distribution of the cumulative deaths at the provin-
cial level posed a greater challenge in terms of model-
ling, and we were only able to fit models to the Western
Cape COVID-19 deaths.
The model predictions with observed deaths for

Western Cape is presented in Fig. 7. The 3PL model
and the Richards model predictions are close and fit
the observed data the best. Figure 7 indicates that the
forecasts of the Gompertz model are closest to ob-
served values beyond 22 June 2020. We can see that
the trajectory of the Gompertz forecasts beyond the
30 day forecast window will overestimate the observed
cases, assuming the actual deaths continue its ob-
served path (Table 5).

Table 2 Short-term predictions of total number of reported cases at the national level under the 3 Parameter logistic, 4 parameter
logistic and Richards model. Estimation period 05/03/2020–22/06/2020

3 Parameter Logistic 4 Parameter Logistic Richards model Observed

Date Prediction Prediction interval Prediction Prediction interval Prediction Prediction interval

26-Jun-20 128,257 127,305–129,275 128,292 127,071–129,025 125,141 123,394–126,557 124,590

1-Jul-20 158,859 157,074–160,633 158,948 156,884–160,560 149,039 143,886–153,385 159,333

6-Jul-20 193,359 190,007–196,599 193,543 189,877–196,681 170,681 159,866–180,740 205,721

11-Jul-20 230,852 225,263–236,388 231,182 225,077–236,880 188,091 170,432–206,750 264,184

17-Jul-20 270,005 261,460–278,480 270,539 261,003–279,896 200,661 176,633–229,649 324,221

22-Jul-20 309,224 297,266–321,792 310,020 296,347–323,957 208,985 179,833–247,952 381,798

Fig. 5 Predicted cumulative COVID-19 cases from the 3 Parameter logistic, 4 parameters logistic and the Richards model and observed cases
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Discussion
In view of the existing healthcare challenges faced by
South Africa, reliable and accurate short-term forecasts
of COVID-19 cases and deaths are critical to ensure op-
timal resource allocation and should be a key aspect of
the strategy to handle the COVID-19 epidemic in the
country. This study modelled COVID-19 cases and
deaths using publicly available data from 5 March 2020
to 22 June 2020. Five data-driven nonlinear growth
models, namely the Richards; 3 parameter logistic; 4 par-
ameter logistic; Gompertz and Weibull were considered.
We observed that models for cases and deaths pro-

vide robust and accurate short-term forecasts for a
period of 10 days ahead at the national level. How-
ever, given the rapidly changing growth rate as the
country approaches the COVID-19 peak, as well as
the changes to COVID-19 regulations and the
reopening of the economy, it is crucial that these
models are fitted daily as new data becomes available
and that forecasts are updated and reported accord-
ingly on a daily basis. In addition, we observed diffi-
culty in fitting models at the provincial level,
particularly for provinces which are relatively “early”
in their COVID-19 outbreak. There were also conver-
gence problems encountered when fitting the five
models, resulting in us only reporting on the three
specific models which converged to cumulative cases

and deaths. It is important to note that all these
models have limitations and may only be applicable
in certain stages of the outbreak, or when enough
data are available for stable estimation of parameters.
Moreover, based on the results presented in this paper

we recommend not to base the forecasting on a single
model or to apply a modeling averaging technique to the
results obtained from the different models. Rather we
propose to use different models as a tool to estimate a
realistic uncertainty interval of the predictions. As we
have observed, models that have the best goodness to fit
within the estimation period can predict poorly beyond
the estimation period (which is the primary interest dur-
ing the outbreak). At each forecasting date, a different
model provides an accurate forecast and prediction in-
tervals. However, if we use the prediction intervals ob-
tained from all models, we will cover the observed
values at both dates. Once again, we re-emphasize that
we do not recommend using our modeling approach be-
yond a forecasting for 10 days ahead.
Although the time for South Africa to reach 100,000

cumulative cases of COVID-19 was approximately 110
days since the first reported case, our forecasts reveal
that the country should be prepared for an additional
47,449–57,358 cases within the next 10 days. This rein-
forces the need for the public to adhere to all the non-
pharmaceutical interventions that have been

Table 3 Short-term predictions of the total number of reported COVID-19 cases based on the 3PL model in Western Cape, Eastern
Cape and Gauteng

Western Cape Eastern Cape Gauteng

Date Prediction Prediction
Interval

Observed
cases

Prediction Prediction
interval

Observed
cases

Prediction Prediction
interval

Observed
cases

26-Jun-20 57,481 57,135–58,197 57,941 19,325 18,993–19,716 21,938 27,930 27,433–28,428 31,344

1-Jul-20 62,129 61,733–63,044 64,377 20,952 20,437–21,541 29,340 32,623 31,783–33,566 45,944

6-Jul-20 65,668 65,228–66,756 70,938 21,516 20,904–22,210 38,081 34,927 33,770–36,240 66,891

11-Jul-20 68,259 67,768–69,501 77,336 21,693 21,040–22,439 48,232 35,905 34,614–37,415 93,044

17-Jul-20 70,399 69,867–71,785 84,254 21,751 21,083–22,519 58,860 36,294 34,942–37,904 123,408

22-Jul-20 71,592 71,020–73,069 87,847 21,764 21,092–22,536 67,818 36,445 35,067–38,100 144,582

Table 4 Short-term predictions of the total of COVID-19 related deaths at the national level obtained for the 3 Parameter logistic,
Gompertz and Richards model

3 Parameter logistic Gompertz Richards Observed deaths

Date Prediction Prediction Interval Prediction Prediction Interval Prediction Prediction Interval

26-Jun-20 2335.60 (2219.46–2457.20) 2427.55 (2307.86–2548.39) 2135.91 (2026.155–2272.12) 2340

1-Jul-20 2699.07 (2534.78–2883.60) 2937.94 (2762.25–3120.19) 2234.63 (2076.82–2461.46) 2749

6-Jul-20 3030.89 (2808.62–3309.00) 3507.83 (3259.49–3783.43) 2274.72 (2084.222–2593.48) 3310

11-Jul-20 3317.85 (3029.44–3715.10) 4135.71 (3768.47–4560.75) 2289.68 (2085.09–2677.04) 3971

17-Jul-20 3595.95 (3230.76–4142.80) 4961.96 (4419.59–5621.05) 2295.63 (2085.252–2724.29) 4804

22-Jul-20 3774.63 (3346.30–4435.10) 5706.81 (4961.87–6607.89) 2297.18 (2085.271–2745.95) 5940
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emphasized, such as social distancing, washing of hands
and the wearing of masks.
A strength of the analysis presented in this paper is

that it was conducted using readily accessible, publicly
available data which is updated in real time. In addition,
the statistical methods applied are relatively simple, in-
tuitive and are not dependent on any assumptions re-
garding COVID-19 transmission dynamics which may
be unknown (or the current knowledge can be mislead-
ing). Other researchers who modelled the COVID-19
outbreak in South Africa using the SEIR approach [4],
predicted that the number of detected cases (assuming

the detection rate of June 12) was 185,000 (89,500 - 358,
000) and 278,000 (132,000 - 535,000) for the 29th of
June and the 6th of July 2020, respectively. The observed
number of cases corresponding to these dates were 144,
264 and 205,721, respectively. These prediction intervals
were substantially wider and further from the true ob-
served values than those produced by our modelling ap-
proach. This advocates that a data driven approach,
while unreliable beyond 10 days ahead, does provide
more accurate forecasts in this period.
A limitation, however, is that we can only predict la-

boratory confirmed diagnosed COVID-19 cases and

Fig. 6 Predicted cumulative COVID-19 deaths in South Africa from the 3 Parameter logistic, Gompertz and Richards models

Fig. 7 Predicted cumulative COVID-19 deaths from the 3 Parameter logistic, Gompertz and the Richards model for Western Cape
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reported deaths attributed to COVID-19. Therefore, it is
possible that the true burden of COVID-19 in the country,
considering asymptomatic or pre-symptomatic undiagnosed
cases may be much higher than that observed. In light of
these limitations, the modeling of COVID-19 deaths is cru-
cial to gain greater insight into the COVID-19 burden in
South Africa. However, due to the low numbers of deaths up
to 22 June, as well as the way in which the death data was re-
ported as was seen in the step-wise patterns observed in
some provinces, modelling deaths using phenomenological
models requires caution. While these model-based predic-
tions of COVID-19 deaths reveal that approximately 1500
new deaths can be expected by 22 July 2020, it is important
to interpret these numbers cautiously in light of the evidence
of a high number of excess deaths in the country [18].
Based on the analysis presented in this paper, a web-based plat-

form (https://www.samrc.ac.za/content/covid-19-forecasts) was
developed in which the observed number of cases and deaths, as
well as short-term forecasts are presented. In this way policy
makers and the general public can consult the website and get a
reliable understanding, supported by evidence observed in the
data, about the COVID-19 outbreak in South Africa. A detailed
description of platform will be given in a future publication.
We have shown the usefulness of non-linear growth

models to provide short term forecasts of COVID-19
cases and deaths in South Africa. We focused on the
short-term prediction of cumulative COVID-19 cases
and deaths, and while the estimates of the turning point
of the outbreak and final size of the epidemic are pre-
sented in the appendix, these parameters are not inter-
preted in the results. The rationale behind this decision,
which was exemplified even in the forecasting of cumu-
lative cases and deaths beyond 14 days, is that the daily
confirmed COVID-19 cases and deaths are rapidly chan-
ging, as are the reporting and testing guidelines in the
country. An area of further work involves a comprehen-
sive assessment of the models applied for long term pre-
diction and internal validation of the model.

Conclusions
This study found that the phenomenological modeling
approach provides reliable and accurate forecasts of

COVID-19 cases and deaths in South Africa for a max-
imum period of 10 days ahead. In view of the rapidly
changing growth rate as the country approaches the
COVID-19 peak, as well as the changes to COVID-19
regulations and the reopening of the economy, we rec-
ommend that these models are fitted daily to the latest
COVID-19 cumulative cases and deaths data.
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