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Abstract

Background: Contact tracing data of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is
used to estimate basic epidemiological parameters. Contact tracing data could also be potentially used for
assessing the heterogeneity of transmission at the individual patient level. Characterization of individuals based on
different levels of infectiousness could better inform the contact tracing interventions at field levels.

Methods: Standard social network analysis methods used for exploring infectious disease transmission dynamics
was employed to analyze contact tracing data of 1959 diagnosed SARS-CoV-2 patients from a large state of India.
Relational network data set with diagnosed patients as “nodes” and their epidemiological contact as “edges” was
created. Directed network perspective was utilized in which directionality of infection emanated from a “source
patient” towards a “target patient”. Network measures of “ degree centrality” and “betweenness centrality” were
calculated to identify influential patients in the transmission of infection. Components analysis was conducted to
identify patients connected as sub- groups. Descriptive statistics was used to summarise network measures and
percentile ranks were used to categorize influencers.

Results: Out-degree centrality measures identified that of the total 1959 patients, 11.27% (221) patients have acted
as a source of infection to 40.19% (787) other patients. Among these source patients, 0.65% (12) patients had a
higher out-degree centrality (> = 10) and have collectively infected 37.61% (296 of 787), secondary patients.
Betweenness centrality measures highlighted that 7.50% (93) patients had a non-zero betweenness (range 0.5 to
135) and thus have bridged the transmission between other patients. Network component analysis identified
nineteen connected components comprising of influential patient’s which have overall accounted for 26.95% of
total patients (1959) and 68.74% of epidemiological contacts in the network.

Conclusions: Social network analysis method for SARS-CoV-2 contact tracing data would be of use in measuring
individual patient level variations in disease transmission. The network metrics identified individual patients and
patient components who have disproportionately contributed to transmission. The network measures and graphical
tools could complement the existing contact tracing indicators and could help improve the contact tracing
activities.
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Background
Studies concerning the transmission dynamics of SARS-
CoV-2 have relied on contact tracing data to estimate
the basic reproduction number (R0) for projecting the
anticipated number of secondary cases [1, 2]. In addition
to its epidemiological importance, contact tracing data is
used in intervention settings to contain the spread of
SARS-CoV-2 transmission effectively [3]. Contact tra-
cing data helps to identify the possible source of infec-
tion, linking exposed individuals and prioritize them for
testing and isolation. Outcomes of SARS-CoV-2 contact
tracing are primarily reported in terms of case yield and
secondary attack rates and sometimes have helped to
identify and describe super spreading events [4]. SARS-
CoV-2 contact tracing data could also be effectively used
for understanding the heterogeneity in disease transmis-
sion, especially at the individual patient level [5, 6].
While population level estimates of R0 aims to compre-
hend the transmission dynamics as a single comprehen-
sive index, individual-level variations in transmission
could offer better insights for strengthening prevention
interventions [5].
Mathematical modelling methods are mostly adopted

for assessing population-level heterogeneity of SARS-
CoV-2 infections. Modelling studies have estimated the
heterogeneity in terms of over-dispersion levels and pro-
portional variations in transmission based on simula-
tions and assumptions [7–10]. In this background,
attempts to measure individual patient-level heterogen-
eity in SARS-CoV-2 context using real world data could
be of direct public health relevance. Characterization of
individuals based on different levels of infectiousness
could guide the contact tracing interventions to
prioritize contact screening, testing and monitoring at in
a targeted manner at field level.
While SARS-CoV-2 contact tracing data is continuously

collected from hundreds of thousands of SARS-CoV-2 pa-
tients, it has not been explored for understanding patient-
level heterogeneity using suitable analysis methods. While
standard epidemiological analysis methods are in place to
generate key parameters of the pandemic, still the suitabil-
ity of social network analysis methods to assess the trans-
mission heterogeneity has not been attempted partly due
to lack of appropriate contact tracing data. Assessing the
individual level of variations would require a relational
dataset indicative of all contact ties which have occurred
between patients and their contacts.
Experiences from past have highlighted the utility of

social network analysis methods in successfully exploring
individual-level transmission events of infectious dis-
eases like Severe Acute Respiratory Syndrome(SARS),
Tuberculosis (TB) and sexually transmitted infections
(STIs) [11–15]. Network analysis methods involving
quantitative metrics and sociograms could be

appropriate and would help to easily comprehend the
transmission events at the granular level, i.e. individuals
[16, 17]. In this background, we propose to adopt social
network analysis methods to assess and understand the
heterogeneity of SARS-CoV2 transmission at individual
patients level.

Methods
We utilized standard social network analysis methods to
exploratively assess the contact tracing data of SARS-
CoV-2 patients in the Indian state of Karnataka to iden-
tify the heterogeneity of transmission at the individual
patient level. This publicly available contact tracing data
of 1959 diagnosed SARS-CoV-2 patients between March
09, 2020, to May 23, 2020, has been collected, compiled
and updated by the Department of Health and Family
Welfare Services, Government of Karnataka, and other
stakeholders for the benefit of the larger public [18–20].
The study data is unique, which represents a cohort of
diagnosed patients and contacts who were identified
subsequently for a continuous period (75 days). During
this period, contact tracing was intensively implemented
in the state of Karnataka, which had relatively yielded a
higher number of contacts per index patient when com-
pared to other settings in India [21]. Contact informa-
tion and transmission which had occurred after this
period was not available at the time of this analysis. This
data is also unique that all patient and contact were
linked using unique identifiers which enabled the ana-
lysis of data from a relational dataset perspective using
social network analysis methods.
Patient’s age, sex, diagnosed date and the epidemio-

logical contact relationships identified through contact
tracing efforts were thus readily available in the source
data set. A relational network data set was created, with
diagnosed patients as “nodes” and the epidemiological
contact between them as “edges”. Each patient was pro-
vided a unique identification number (ID), and each pa-
tient’s unique epidemiological contact with each other
patients was also identified and labelled. The relational
data was analyzed from a directed network perspective
in which directionality of infection emanated from a
“source patient” towards secondary or “target patient”.
Our analysis included only individually identifiable

patient-level contacts, and scenarios where such individ-
ual identification could not be ascertained (eg common
places and travel) were not considered for analysis. This
was necessary considering the specific objective of the
study to assess the variations at individual patient levels.

Social network measures
The present analysis calculated social network centrality
measures to identify the key nodal patients who were in-
fluential in transmitting the SARS-CoV-2 infection.
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Components analysis was conducted to identify patient
sub-network structures which have disproportionately
contributed to infection transmission. Average path
length and network diameter measures were calculated
to assess the dispersion level of infection within patient
networks. A graphical explanation of the following social
metrics are provided in Fig. 1.

Measure definitions
Out-Degree Centrality measures the number of epi-
demiological contacts emanating from a patient (node)
that are directed to other patients (nodes) in the net-
work. A “zero” out-degree centrality measure for a pa-
tient (node) implies that the patient had not transmitted
infection to anyone and considered not to be a source
patient. A “non-zero” or higher out-degree centrality in-
dicates that the patient is a source of infection for one
or many other patients in the network [22, 23]. (Fig. 1).
In-degree centrality measures the number of epi-

demiological contacts incident upon a patient (node). A
“zero” in-degree centrality measure for a patient (node)
implies that the patient has not been infected by any
other patient in the network and thus lack a source of
infection. A “non-zero” or higher in-degree centrality in-
dicates that the patient is a target patient who had got
the infection from one or more source patient [22, 23].
(Fig. 1).
Betweenness centrality measure indicates how fre-

quently a given patient (node) acted as a bridge between
other patients (nodes) in the network. This measure is
calculated by identifying the shortest contact paths

between the patients and further measuring the number
of times each patient is found in those shortest paths. A
non-zero high betweenness centrality for a patient sug-
gests that the patient had “bridged” infection between a
source and target patient. The higher the betweenness
centrality, the higher would be the potential of a case to
transmit the infection from source patient [24]. (Fig. 1).
Network component are connected structures com-

prising of source and target patients who have epidemio-
logical contacts between them but do not connect to
other similar patient components. The component with
the largest number of source and target cases was identi-
fied as a giant component [25]. (Fig. 1).
Path length, in any given network, is the number of

edges (relational ties) that is present between a given
pair of nodes. The mean path length is the “average of
the shortest path length, averaged over all pairs of
nodes” in a network. In the present analysis context, it is
the shortest path between every source and target pa-
tient. The average denotes here the average epidemio-
logical contact distance between the source and target
patient. Network diameter denotes the farthest epi-
demiological contact distance between the source and
target patient in the network [26, 27]. (Fig. 1).

Analysis process
The relational data with nodes and edges were created
in Microsoft -Excel software and was further imported
into Gephi software (Version 0.9.2) for network analysis
[28, 29]. Network measures and components were gen-
erated, and the outputs were derived as a data table and

Fig. 1 Graphical illustration of network measures. A network of 7 patients denoted by round nodes and the epidemiological relations between
them denoted as directed lines with arrows Patient P150 has an out-degree of 4 and have acted as a source of infection to 4 patients P226, P223,
P448, P225. Similarly, patient P225 has an out-degree of 2 and had acted as a source patient for P282 and P284. Patient P225 has an in-degree of
one and had acted as a target patient who received the infection from P150. Patient P225 depicted as the green node is the only node in the
network which has betweenness centrality of 2 and had bridged the transmission from P150 to two other patient P284 and P282 Other nodes is
depicted in purple have zero betweenness. The path length between patient P150 and P225 is one m path length from 150 to P282 and P284 is
2. The maximum path length in the network (i.e. network diameter) is also two which lies between P150 and P284, P282. The number of network
component for the depicted network is one as all patient s nodes are connected either directly or indirectly to each other, and no patients node
is left unconnected
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sociograms (Network graphs). The network measure
tables from Gephi were exported to STATA 15.1 for
generating network summary measures for each patient
and for calculating percentile ranks. Network graphs or
sociograms were generated to visualize relationships pat-
terns between source and target patients. Force atlas lay-
out and Fruchterman Reingold layout in Gephi software
were used to visualize patient’s networks [30, 31].

Results
Of the total 1959 patients, 1203 (61.40%) were male, and
409 (20.87%) were aged 18 or fewer years.
The calculated network measures showed that 1738

(88.72%) patients had an out-degree centrality measure
of zero and thus have not acted as a source of infection
to other patients. The remaining 221 (11.21%) of pa-
tients were found to have a non-zero out-degree meas-
ure (range 1–45) and found to be the source of infection
to 787(40.19%) other patients in the network. Among
these source patients, 0.65% (12) patients have acted as a
source of infection to 10 or more target patients and
have collectively infected 37.61% (296 of 787) target, pa-
tients. (Table 1).
Of the total 1959 patients, 1218(62.17%) patients had

an in-degree centrality measure of zero and thus lacked
any epidemiological contact with a source patient. Of

the remaining, 707(36.09%) of patients had an in-degree
measure of one, implying that one source patient was
identified for each of them. A minimal number of pa-
tients 34 (1.73%) had an in- degree of more than one
(range 2–5) implying more than one source patient were
identified for each of them. (Table 2) Degree centrality
measures summarized that a total of 787 epidemiological
contacts occurred between 221 source patients and 741
target patients.
Betweenness centrality measures was zero for 1886

(95.25%) of patients implying that they were not having
any bridging role in the transmission of infection be-
tween any other pair of patients. The remaining 93
(7.50) patients had a non-zero betweenness centrality
measure (range 0.5 to 135) implying their bridging in
transmission between other patients. (Table 3) The sum-
mary measure of centrality measures shows the highly
skewed distribution of the out-degree and betweenness
centrality measures. (Table 4).
A total of 1207 sub network components were identi-

fied, which together comprised 1959 patients with and
without epidemiological contacts. Of these 1207 compo-
nents, nineteen components with at least ten patients
and ten contact relationships were identified, which
overall accounted for 26.95% (529) of the total patients
(1959) and 68.74% (541) of total transmission contacts

Table 1 Source patient categorization based on out-degree centrality measures (n = 1959)

Out-Degree centrality measure No of patients Per cent Percentile Rank Source patient status

0.00 1738.00 88.72 44.35 No

1.00 96.00 4.90 91.16 Yes

2.00 39.00 1.99 94.61 Yes

3.00 30.00 1.53 96.37 Yes

4.00 18.00 0.92 97.60 Yes

5.00 12.00 0.61 98.36 Yes

6.00 1.00 0.05 98.69 Yes

7.00 7.00 0.36 98.90 Yes

8.00 5.00 0.26 99.20 Yes

10.00 1.00 0.05 99.36 Yes

11.00 2.00 0.10 99.43 Yes

12.00 1.00 0.05 99.51 Yes

15.00 1.00 0.05 99.56 Yes

17.00 1.00 0.05 99.61 Yes

19.00 1.00 0.05 99.66 Yes

26.00 1.00 0.05 99.71 Yes

29.00 1.00 0.05 99.77 Yes

31.00 1.00 0.05 99.82 Yes

34.00 1.00 0.05 99.87 Yes

36.00 1.00 0.05 99.92 Yes

45.00 1.00 0.05 99.97 Yes
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(787) of the network. These nineteen components have
each proportionately represented 3.22 to 0.5% of total
patients and occurred within a time interval of 13 to 48
days. Components were not occurring consecutively but
mostly simultaneously over time. (Table 5) The largest
patient component had 63 (3.22%) patients and 63 (8.01)
transmission contacts. (Fig. 2).

The membership of these nineteen patient compo-
nents showed that they were disproportionately repre-
sented by patients who had highly skewed out-degree
and betweenness centrality measures. Of all 57 pa-
tients with the highest out-degree centrality (ranking
97.5 and above), 38(64.28%) were represented in these
nineteen patient components. Similarly of all 47

Table 2 Target patient categorization based on In-degree centrality measures (n = 1959)

In-degree centrality measure No of patients Per cent Percentile Rank Target patient status

0 1218 62.17 47.62 No

1 707 36.09 80.21 Yes

2 29 1.48 99 Yes

3 1 0.05 99.77 Yes

4 1 0.05 99.82 Yes

5 3 0.15 99.92 Yes

Table 3 Bridging role categorization of patients by betweenness centrality measure (n = 1959)

Betweenness centrality measure No of cases Per cent Percentile Rank Bridging role in the transmission

0 1866 95.25 47.62 No

0.5 1 0.05 95.27 Yes

1 27 1.38 95.99 Yes

1.5 1 0.05 96.7 Yes

2 17 0.87 97.16 Yes

2.5 1 0.05 97.62 Yes

2.5 1 0.05 97.67 Yes

3 12 0.61 98 Yes

3.25 1 0.05 98.34 Yes

3.5 1 0.05 98.39 Yes

4 2 0.1 98.46 Yes

4.75 1 0.05 98.54 Yes

5 1 0.05 98.59 Yes

6 5 0.26 98.74 Yes

6.08 1 0.05 98.9 Yes

7 2 0.1 98.97 Yes

8.33 1 0.05 99.05 Yes

9 2 0.1 99.13 Yes

10 5 0.26 99.31 Yes

11 2 0.1 99.48 Yes

12 1 0.05 99.56 Yes

15 1 0.05 99.61 Yes

19 2 0.1 99.69 Yes

20 1 0.05 99.77 Yes

32 1 0.05 99.82 Yes

47 1 0.05 99.87 Yes

92 1 0.05 99.92 Yes

135 1 0.05 99.97 Yes
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patients with the highest betweenness centrality
(ranking 97.5 and above), 45 (95.74%) of them were
represented in these nineteen patient components.
(Table 5).
The mean path length between the patients was

measured as 1.53, and the network diameter (or the
largest path length between patients) was measured as
4. (Fig. 2).

Discussion
Epidemiological studies on SARS-CoV-2 have empha-
sized the importance of heterogeneity in transmission
and the need for measuring transmission events and var-
iations at the individual levels [7–10]. These studies have
emphasized the importance of heterogeneity information
in addition to estimating basic reproduction number.
Through this study we have attempted to adopt the

Table 4 Summary statistics of network centrality measures

Summary
statistics

Out-degree centrality measure of
patients (nodes)

Betweenness centrality measure of
patients (nodes)

In degree centrality measure of
patients (nodes)

Mean 0.72 0.34 0.4

SD 2.23 4.09 0.55

Variance 5 16.74 0.3

Skewness 12.14 25.2 1.61

Kurtosis 186.19 738.96 9.92

Table 5 Network components of 1959 SARS-CoV-2 diagnosed patients

Patient
components

No & % of
patients in
components

No & % of
transmission
contacts in
components

components
initiation
datea

components
end datea

Cycleb Patients with Out-
degree centrality > =
97.5th percentile

Patients with
Betweenness
centrality > =97.5th
percentile

C1 63 (3.22) 63 (8.01) Mar 262,020 Apr 292,020 34 P52,P88 P88, P103,P104

C2 49 (2.50) 48 (6.10) Apr 092020 May 192,020 40 P653 P208,P420, P653

C3 46 (2.35) 51 (6.48) Apr 032020 May 212,020 48 P128,P224,P483,P496,
P547

P224,P483, P484,P486,
P496,P539,P547,P552,P721

C4 41 (2.09) 41 (5.21) Apr 122,020 May 172,020 35 P221,P306 P306,P362,P 510

C5 40 (2.04) 39 (4.96) Apr 292,020 May 212,020 22 P533,P651 P651

C6 37 (1.89) 36 (4.57) Apr 302,020 May 212,020 21 P556,P581,P662 P581,P662P,P667,P852

C7 35 (1.79) 34 (4.32) Apr 222,020 May 092020 17 P419 –

C8 31 (1.58) 30 (3.81) May 052020 May 182,020 13 P659 –

C9 28 (1.43) 27 (3.43) Apr 102,020 May 122,020 32 P205,P425 P395,P425,P 515,P529,P
532

C10 25 (1.28) 35 (4.45) Apr 042020 May 142,020 40 P134,P138,P171,P179 P179,P171, P371

C11 22 (1.12) 21 (2.67) May 032020 May 192,020 16 P607 0

C12 18 (0.92) 18 (2.29) Apr 192,020 May 132,020 24 P507,P536 P432,P501, P507,P536,
P578

C13 17 (0.87) 23 (2.92) Apr 072020 May 032020 26 P167,P168 P350

C14 15 (0.77) 18 (2.29) Apr 032020 May 052020 32 P125,P165,P186 P165,P186, P367,P368

C15 14 (0.71) 13 (1.65) Apr 282,020 May 232,020 25 P913 P913

C16 13 (0.66) 12 (1.52) Apr 052020 May 182,020 43 P245 P245,P301,P575

C17 13 (0.66) 12 (1.52) May 022020 May 202,020 18 P590 –

C18 11 (0.56) 10 (1.27) Mar 312,020 Apr 172,020 17 P141 –

C19 10 (0.51) 10 (1.27) Mar 212,020 Apr 092020 19 P19 –

C1-C19
Summary

528 (26.95%) 541 (68.74%) 21-March to May 232,020 63
days
cycle

36 patients 45 patients

aCycle refers to the time period between the first and last diagnosed case of the components; b Component initiation date is the earliest diagnosis date of a case
in that components and components end is the latest date of diagnosis of a case in that components
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standard social network analysis methods to measure
heterogeneity by analyzing a large scale contact tracing
data of SARS-CoV-2. Availability of relational dataset
consisting of uniquely identified and linked patient and
contacts was an advantage which enabled the adoption
of network analytical methods.
Our adopted network analysis methods highlights the

individual patient level variation in SARS-CoV-2 trans-
mission. The out-degree centrality measures highlight
that while the majority (88.72%) of the patients in the
cohort had not transmitted infection, only a minuscule
proportion of source patients (0.65%) have dispropor-
tionately transmitted the infection to 36.7% of target
patients. In-degree, centrality measures shows that as
much as 62.17% of diagnosed patients did not have any
source of infection and less proportion of patients
(1.72%) had more than one source of infection. Between-
ness centrality measures highlights that not all infections
were directly transmitted from few influential source pa-
tients (with higher out-degree) to many target patients,
but only through influential bridging patients (with high
betweenness) who transmitted the infection from them.

The centrality measures were thus able to identify and
measure the differences among individual patients to in-
fect others, getting infected and being able to transmit
the infection as an intermediary to many others. The
summary statistics of the out-degree and betweenness
measures hints a heavy-tailed distribution with only a
few actors in the network playing an influential role in
being source and intermediaries of transmission. How-
ever, we have not attempted to prove the network distri-
butional properties in this study since that would
require a comprehensive social network survey data
collected from SARS-CoV-2 patients and their contacts.
The contact tracing data used by us do not have infor-
mation on symptom onset, confirmation and related in-
formation which would be required for such analysis.
The network components analysis identified 19 key

components which have contributed to almost two-
thirds of the total transmission events between patient
and contacts. Our findings show that the maximum
transmission had happened within these nineteen com-
ponents, which each proportionality represented only
3.22 to 0.5% of the total patients. The component

Fig. 2 Graphical representation of C1, a giant component with 63 (3.22%) patients and 63 (8.01) transmission contacts. Giant component
represented in the sociogram consists of 63(9.35% of 673) cases (circular nodes) and 63 (12.96% of 486) epidemiological contacts (edges denoted
by arrowed lines). The size of a node is proportional to its out-degree centrality. The arrows denote the direction of infection from source to
target cases. Patient P52 has the largest out-degree (36) and acted as a source case for 36 target cases. The next influential node was P88, who
acted as the source case for nine target cases. Other influential source cases were P104, P 78, and P159 who had out-degree of 2. Nodes P111,
P183, P77, P81, P 85, P109, P319, P346, P382, and P383 were the source case for one target case each. The colour of the node indicates the
category of betweenness centrality measure. Lavender colour denotes, zero betweenness, leaf green nodes denote betweenness of one, blue
denotes betweenness of 2, saffron denotes betweenness of 1.5, grey denotes betweenness of 2.5, rose denotes betweenness of 3, dark green
denotes betweenness of 9 for P88 which acted as a bridge of transmission between source case P52 and target cases P112, P210, P216, P212,
P214, P209, P212, P111 and P202. The path length between P52 and P202 is 4, which was the maximum and thus the diameter of the network.
P52 had in-Degree of zero, P200 had in-degree of 2, and all other patients had one in-degree
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analysis showed that source patients with high out-
degree had passed their infection mostly through various
intermediaries i.e. those with high betweenness. For
example, in the identified giant component with 63
patients, (Fig. 1) it was identified that the first source pa-
tient (P52) had not transmitted infection to all 62 target
patients by himself but through the considerable number
of intermediaries. It was found that these individuals
with high out-degrees and betweenness, (who could be
called influencers) are predominantly found in these 19
components with have contributed to 68.7% of transmis-
sion. From this, we could hypothesize that influential pa-
tients as small connected components may contribute to
much of the transmission events when compared to sole
influencers or super spreaders [32–34].
The path length metrics indicated that on average any

source and target patients in the network could be
reached by crossing 1.5 steps and at a maximum, it was
maximum four steps between the farthest placed source
and target patients. This highlights that the transmission
of infection is not widely dispersed through multiple
waves from source patient and is limited to less than
two waves on average.
Our application of network analysis methods holds im-

portance from two aspects. First, from a methodological
perspective, our proposed network analysis methods
could be easily adapted for large scale contact tracing
data for SARS-CoV-2. However, it also necessitates the
availability of a properly line listed and linked patient –
contact data. While we have used considerably large data
available during the initial months of the pandemic, the
availability of such data is only rare in most settings
[35]. Thus our proposed methods also implicitly recom-
mend for continuous collection and systematic manage-
ment of contact tracing data using unique identification
numbers (IDs) for all patients and their identified
contacts.
Secondly, the adopted network analysis methods and

the measures could be of importance for public health
implementers who are directly involved in the contact
tracing data of SARS-patients. At present SARS-CoV-2
contact tracing data is systematically collected only in
few settings and is analyzed to summarise population
and large cluster level dynamics and heterogeneity levels
[36]. Our adopted network analysis methods could com-
plement such efforts and help to precisely characterize
all individual-level variations in transmission at source
and target patient levels. While we have adopted net-
work analysis retrospectively, prospective identification
of influential patients (with high out-degree and be-
tweenness measure) and closely connected patient
groups (components) could enable prioritizing the con-
tact tracing activities in a more targeted way. Individual
patients who have disproportionately infected others

could be followed up, and their contacts could be in-
tensely monitored for interrupting transmission and fa-
cilitate early diagnosis. For examples, in our analysis, the
largest patient component (C1) with 63 patients, patient
P52 had the largest out-degree centrality measure of
thirty six. (Fig. 1) If network analysis had been used to
analyze the emerging data at that time concurrently, the
out-degree measure of P52 patient could have signalled
him as an influential source patient at an early time and
could have enabled targeted and intense monitoring of
all the contacts. Considering the wider time duration
(63 days on average) (Table 5) that elapsed between the
first and last diagnosed patient in the nineteen key com-
ponents which contributed to majority of infections, net-
work measures could had been of use to fast track the
contacts of influential patients in these components.
The network measures and components could thus

help the public health personnel to comprehend the key
influential patients and patient groups (components) in
their intervention settings. Basic network measures
could be of importance for public health planners who
would have to deal with contact tracing data of tens of
thousands of patients on a daily basis and comprehend
it. The quantitative measures and graphical tools of net-
work method could be useful to analyze exhaustively
and easily interpret the large scale contact tracing data
which otherwise remain underutilized. We understand
that contact tracing data on SARS-CoV-2 holds more
valuable information and fine details which could be best
explored by adopting complementary methods like social
network methods, which has been successfully used in
other infectious diseases contexts [11–15].

Conclusion
Our adopted social network analysis approach was found
useful in capturing the heterogeneity of SARS-COV-2
transmission at the individual patient level by analyzing
the contact tracing data from a network perspective.
The method had helped identify the key individual pa-
tients and components which could help the public
health implementers to focus their contact tracing activ-
ities. The network measures and graphical tools could
complement the existing contact tracing indicators. Pro-
spective adoption of network analysis could help explore
large volumes of contact tracing data to detect hetero-
geneity and thus could aid implementing contact tracing
activities in a better-informed manner.
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