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Abstract

Background: As the whole world is experiencing the cascading effect of a new pandemic, almost every aspect of
modern life has been disrupted. Because of health emergencies during this period, widespread fear has resulted in
compromised patient safety, especially for patients with cancer. It is very challenging to treat such cancer patients
because of the complexity of providing care and treatment, along with COVID-19. Hence, an effective treatment
comparison strategy is needed. We need to have a handy tool to understand cancer progression in this
unprecedented scenario. Linking different events of cancer progression is the need of the hour. It is a huge
challenge for the development of new methodology.

Methods: This article explores the time lag effect and makes a statistical inference about the best experimental arm
using Accelerated Failure Time (AFT) model and regression methods. The work is presented as the occurrence of other
events as a hazard rate after the first event (relapse). The time lag effect between the events is linked and analysed.

Results: The results were presented as a comprehensive analytical strategy by joining all disease progression. An AFT
model applied with the transition states, and the dependency structure between the gap times was used by the auto-
regression model. The effects of arms were compared using the coefficient of auto-regression and accelerated failure
time (AFT) models.

Conclusions: We provide the solutions to overcome the issue with intervals between two consecutive events in
motivating head and neck cancer (HNC) data. COVID-19 is not going to leave us soon. We have to conduct several
cancer clinical trials in the presence of COVID-19. A comprehensive analytical strategy to analyse cancer clinical trial
data during COVID-19 pandemic is presented.
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Background
Cancer patients are more prone to develop COVID-19 be-
cause they are immunocompromised [1]. Studies have
suggested that cancer patients are more susceptible to
Coronavirus, whereas individuals without cancer are im-
munosuppressed. Though the risk of COVID-19 infection
varies individually, cancer patients require continuous care
and treatment intervention and potential risk of COVID-
19 exposure could be fatal [2]. Studies have shown that
COVID-19 has created a great challenge to manage the
cancer care delivery system [3].
It is essential to assess the patient’s risk of both

COVID-19 and tumour control on a case-by-case basis
with the patient. Conventionally, the treatment effect of
head and neck cancer (HNC) is explored by multiple
events like loco-regional control (LRC), progression-free
survival (PFS), and overall survival (OS). These events
are analysed separately by Kaplan-Meier [4] and the Cox
Proportional Hazard (CPH) models [5]. Currently, it is
difficult to isolate the reason for death due to Corona-
virus or disease progression among cancer patients [6].
Similarly, all ongoing cancer clinical trials cannot stop
due to COVID-19 in the long run, and it is challenging
to conduct cancer clinical trials [7] in this present envir-
onment. Thus, time lag/intervals between different types
of events are essential to explore.
In this manuscript, we focused on exploring the time lag

effect and studied the statistical inference about the best
experimental arm using Accelerated Failure Time (AFT)
Model and regression methods. We present our work here
for the occurrence of other events as a hazard rate after
the first event (relapse). It is known that local relapse bio-
logically triggers cancer progression and death; however,
in this study, we have not considered it. As most of the
events are likely to be influenced by COVID-19 infection,
so it required to establish an integrated analysis.
The relapse triggers disease progression, and further,

disease progression accelerates death rate. The study
considered two-time points generated as the duration
between relapse to progression and duration between
progress to death. For these transition periods, we used
the CPH and AFT model, which are useful to work on
transition states where treatment effect is comparable.
In this study, the statistical model was considered to

handle both the previously mentioned time points and ex-
plore the relations between gap durations. Further, we ap-
plied a CPH model to understand the different types of
transition hazard models and the time-varying covariates
considered separately. The results presented as a compre-
hensive analytical strategy. An AFT model applied with
the transition states, and we explained the dependency
structure between the gap times using auto-regression.
The effects of arms compared using the coefficient of
auto-regression and AFT models - the complete analysis

using Bayesian techniques executed with R open-source
software and OpenBUGS.

Methods
Dependency modelling
It is difficult to reduce risk and prevent the spread of the
COVID-19 virus among vulnerable cancer patients. At the
same time, we have to provide treatment to all these sev-
eral thousand vulnerable cancer patients. Thus, this be-
comes very challenging to treat patients separately from
patients only with COVID-19. There is a very minimal
chance that cancer patients will not get infected by
COVID-19 in the long run. We have to run several clinical
trials in the presence of COVID-19 infection. Disease pro-
gression events occurred as loco-regional relapse, progres-
sion, and death - the events marked as 1, 2 and 3,
respectively. The events ordered, which implies that the
loco-regional relapse appeared earlier than progression or
death, and death as a terminal event. Here, our interest
was to measure the event occurrence rate at each of the
interval or gap time between two events. Let Ti, j be the
actual event time for ith individual and j denoted different
events by 1, 2 or 3. We considered that all the individuals
had experienced at least one event. The intervals between
two subsequent events were defined as follows:

Gi;1 ¼ Ti;1 and Gi; j ¼ Ti; j − Ti; j − 1 for i
¼ 1; 2;… :; n; j ¼ 1; 2 and Ti;0 ¼ 0: ð1Þ

In our study, the gap times were assumed to be
dependent with ordered events. In order to the depend-
ency structure, we concluded that the 1st event corre-
sponds to Gi, 1, the duration from the beginning of the
study to the occurrence of the second event, the second
event correspond to Gi, 2 and so on. So, the dependency
structure was presented among Gi, 1, Gi, 2 etc.
We assumed that a simple linear regression model be-

tween Gi, 1 and Gi, 2. The regression model was.

Gi;1 ¼ β0;0 þ β1;0Gi;0 ; Gi;2

¼ β0;1 þ βi;1Gi;1 ð2Þ

We fit two separate linear regressions for two different
arms. β1, 0 and defined the change in Gi, 2 for a unit change
in Gi, 1 for arm 0. The same inference was drawn for β1, 1
So, ignoring the intercept term in the regression model, the
difference between the coefficients β1, 1- β1, 0 stated the
change in dependent gap time was due to change in the
arm. We fit AFT models for Gi, 1 and Gi, 2 and obtained
the corresponding coefficients of the arm to measure the
change on events due to variation in treatment.

AFT model with gap time
The AFT model is a popular alternative of proportional
hazard model to analyse survival data [8, 9]. It is also
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applicable in the current COVID-19 scenario. It is more
efficient to model the survival time rather than hazard
rate; to observe the dependency pattern between ob-
served times. In the AFT model, it assumed that the ef-
fect of the covariate is to accelerate or decelerate the
survival duration by some constants. The AFT model is
expressed as,

Y i ¼ log Gið Þ ¼ μþ βxi þ εi: ð3Þ
Here, Gi denotes the survival time for ith individual, β is

the unknown regression coefficient, μ is the intercept
term, xi is the covariate for ith subject (i = 1, 2, …. n), εi is
the error component, ε1, ε2, …, εn are independent and
identically distributed as Normal (0,1). So, given covari-
ates, the response times are independent. In our study, we
consider the gap time to fit AFT models for different
event occurrences. The gap times (Gi) between two con-
secutive events are model as response variables in eq. (3).
For the AFT model, the survival function is

S tjxið Þ ¼ S0½ exp − μþ βxið Þf gt: ð4Þ
We considered the Bayesian approach to estimate the

parameter estimates for the AFT model obtained from
the posterior distributions based on Markov Chain
Monte Carlo (MCMC) simulation by Gibbs Sampling
method. To conduct data analysis using Bayesian tech-
niques, we need to specify the prior distributions of the
parameters. We used independent Gaussian prior distri-
butions with mean 0 and variance 0.001 for the param-
eter μ and other regression coefficient β. The models
were compared, and the best fit model was decided
based on the Akaike Information Criterion (AIC).
The better fit among candidate models performed

through the Akaike information criterion (AIC) [10, 11] as

AIC ¼ − 2 ln p θ̂
� �n o

þ 2k: ð5Þ

The number of parameters is represented by k. The
random variable and maximum likelihood estimate were

presented by x and θ̂ where the parameter of interest
was defined as θ. The minimal value of AIC shows a bet-
ter fit of the model. The Bayesian extension of the Cox
proportional hazard model was presented as

P θjYð Þ ¼ P Y jθð ÞP θð Þ
P Yð Þ : ð6Þ

The term Y was the observed evidence, and the mar-
ginal probability of Y was defined as P(Y). The prior is
P(θ) and the likelihood function was P(Y| θ). Mean,
standard deviation, credible interval and the highest

posterior density (HPD) were computed for each param-
eter. An alternative of the AIC in the context of Bayesian
model selection method was Deviance Information Cri-
teria (DIC) [12, 13]. The Deviance Information Criteria
(DIC) was defined as,

DIC ¼ − 2 ln p θ̂
� �n o

þ pD ð7Þ

where

pD ¼ E − 2 ln p xj θ̂
� �n oh i

þ 2 ln p xjθ̂
� �n o

: ð8Þ

The DIC estimates the valid number of parameters by
the difference of the posterior mean of the deviance and
deviance of posterior means.

Bayesian CPH regression separately for each event
The Cox proportional hazards (Cox PH) model was applied
in time-to-event data analysis [14–16]. It was defined as

λi Zið Þ ¼ λ0 tð Þ exp Ziβð Þ ð9Þ
or

log λi Zið Þ ¼ log λ0 tð Þ þ Ziβ; i ¼ 1; 2;…; n: ð10Þ
For the ith patient, the baseline hazard and hazard at

time t were defined by λ0(t) and λi(t| Zi), Zi is the covariate
for an ith patient with the regression coefficient β. The
hazard ratio was defined as a predicted hazard function
under different predictor variables. The partial likelihood
function was adopted to fit the Cox model. A high p-value
for the coefficient was defined as less significance of the
variable of interest. The better fit among candidate models
was performed through the Akaike information criterion
(AIC) as discussed. Similarly, DIC was used for model
comparison while using Bayesian techniques.
We considered different time-to-events in different

CPH models with several factors like arm, age, and gen-
der and obtained the posterior means of the parameters
through the models provided in Table 1. The CPH was
performed as a conventional choice to show time to
event data analysis.

Results
Dataset was presented to resemble a motivating example
of head and neck cancer (HNC). A total of 74 patients
treated with two chemotherapeutic arms were illus-
trated. The clinical trial was aimed to perform the PFS
between two types of therapy. The therapies were (I)
‘Arm-A’ (n = 43 subjects) or (II) ‘Arm-B’ (n = 31 sub-
jects). The covariates considered were (a) Arm, (b) Age
and (c) Gender. Subjects were followed continuously,
and the occurrence of relapse, disease progression and
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death were monitored. Data with missing observations
were not considered for analysis. The mimic data was
uploaded as supplementary file S1.
We considered the duration between treatment initiation

to the time of progression or the last follow-up visit for pa-
tients who had not progressed – the sequence was defined
as RECIST criteria version 1.1. Disease-free survival was con-
sidered as the duration while the person experienced
complete remission. We found the period between LRC and
progression as T1 and between progression and death as T2.
One of the aims of the trial was to investigate the best ac-

tive arm to prolong the PFS. The experiment was continued
to explore the loco-regional recurrence and overall survival.
In this example, we measured the LRC as the duration be-
tween dates of registration to the time of first loco-regional
relapse. Similarly, the date of enrolment to date of progres-
sion was defined as PFS. The OS was defined as the last date

of follow-up or date of death from the date of registration.
The CPH hazard model and AFT model were considered
for different states in the context of Bayesian frameworks.
The states were defined as a dead state (state 3), living with
the progressed disease (state 2) and living with loco-regional
recurrence, not with distant metastasis/progression (state1).
The direct transition from state 1 to state 3 is possible.
However, as mentioned earlier, we considered only those
patients for which all three states were apparent.
The CPH model applied in this dataset was defined as,

λ xð Þ ¼ λ0 tð Þ exp β1�Armþ β2�Ageþ β3�Gender
� �

:

ð11Þ

The three covariates considered for the modelling
were Arm, Age, and Gender. The results were illustrated
in Table 1. The survival curves corresponding to LRC

Table 1 Posterior Estimate generated through different models through Cox PH model

Bayesian Estimate MLE

Response Parameter Posterior Mean (SD) 95% HPD DIC PD

LRC Arm −0.31 (0.14) (−0.61, − 0.03) 2187.7 0.99 − 0.31 (− 0.60, − 0.02)

Age −0.20 (0.17) (− 0.53, 0.13)

Gender 0.41 (0.23) (−0.06, 0.86)

PFS Arm −0.31 (0.13) (−0.58, − 0.05) 2614.46 0.99 − 0.31 (− 0.57, − 0.04)

Age −0.38 (0.15) (− 0.64, − 0.09)

Gender 0.49 (0.22) (0.05, 0.91)

OS Arm −0.16 (0.13) (−0.42, 0.08) 2610.64 0.99 −0.16 (− 0.42, 0.08)

Age −0.38 (0.15) (− 0.68, − 0.09)

Gender 0.28 (0.20) (−0.13, 0.66)

Fig. 1 Loco-regional relapse progression
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and PFS are shown in Fig. 1 and Fig. 2. The
Kolmogorov-type supremum test was performed to ob-
tain the p-value.
The AFT models computed considering arm as the

only covariate. The model was

Y ¼ log Gð Þ ¼ μþ β�Armþ ϵ: ð12Þ

The posterior mean and standard deviation of the
Arms were obtained by the AFT and regression model.
The density plots of the difference of Arm effect from
both the models are shown in Fig. 3.
We can draw this inference that the dependency of gap

times is translated through the regression structure. So,
adding the arm effect from the AFT survival model for the
first gap time and the arm effect was obtained from the re-
gression model. Thus, given the information of time

between LRC and PFS, and the dependency structure be-
tween gap times, the survival duration between PFS and
OS was predicted. The results of the posterior means ob-
tained using the Bayesian AFT model are given in Table 2.

Discussion
The novel coronavirus that causes COVID-19 appeared
more than twice as high among individuals with cancer
than the general population [17]. In survival analysis of
disease-related to oncology, the patients commonly ex-
perience multiple events like loco-regional relapse, pro-
gression, death across the follow-up period. The interest
lies in the prediction of survival duration for a particular
event and evaluating effective treatments - the analysis
carried by assuming the independence of the events. How-
ever, due to missing data on follow-up visits of the pa-
tients, information regarding the complete follow-ups of

Fig. 2 Progression-Free Survival

Fig. 3 The plot of Arm effect difference from AFT model and auto-regression model
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the patient is often unknown. So, their survival duration
cannot be predicted based on the analysis carried out on
the previously occurred events. The dependent modelling
of the durations between consecutive events will assist in
predicting the occurrence of the next event. The general-
ised version of the multi-state model is well-documented
[18, 19]. The purest form of the mortality model having
two states are, ‘alive without disease’ and ‘dead’ and a
linked transition between these two states. The competing
risk model is defined as a provision where individuals may
die due to other causes [20–22]. The widely accepted form
of the multi-state model is the illness-death model or dis-
ability model. The associated package to work in these di-
rections is ‘mstate’ is useful for multi-state regression and
to get prediction probability. Another package ‘survdim’ is
helpful to perform type-specific Cox models. The para-
metric multi-state model showed through ‘msm’ and ‘flex-
surv’. This work is performed with open source software
OpenBugs to serve the Bayesian.

Conclusions
The constant news about the coronavirus pandemic is
relentless and has a long list of terrifying characteristics,
and it is frightening because they are unknown and un-
predictable. In this situation of the outbreak, it is not
possible to separate treatment for cancer patients due to
COVID-19. An effective treatment comparison strategy
is required. We presented a handy tool to understand
cancer progression in this unprecedented scenario. Link-
ing different events of cancer progression is the need of
the hour, and it is a methodological challenge. We pro-
vide the solutions to overcome the issue with intervals
between two consecutive events by considering the ex-
ample of head and neck cancer (HNC) data.
Now it is difficult to run a cancer clinical trial with

COVID-19. All ongoing cancer clinical trials now are ei-
ther on hold or severely affected. It is not a temporary
problem. It will put questions about COVID-19 related
death in all ongoing trials in the future. Unless we create
a comprehensive analytical strategy to deal with
COVDI-19 associated mortality during the cancer clin-
ical trial, we cannot find the best effective treatment out-
comes obtained through cancer trials. We preferred not
to consider LRC, PFS, and OS as separate entities to

understand treatment success. Here, LRC and PFS en-
tities are merged through their gap times and defined as
event till PFS. The recommendation is to consider dis-
ease progression and transition into account rather than
consider these events as separate entities to understand
the best treatment effect.
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