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Abstract

regime is observed on the population.

algorithms both for exact and inexact recovery.

population scans.

Background: The capacity of the current molecular testing convention does not allow high-throughput and
community level scans of COVID-19 infections. The diameter in the current paradigm of shallow tracing is unlikely to
reach the silent clusters that might be as important as the symptomatic cases in the spread of the disease. Group
testing is a feasible and promising approach when the resources are scarce and when a relatively low prevalence

Methods: We employed group testing with a sparse random pooling scheme and conventional group test decoding

Results: Our simulations showed that significant reduction in per case test numbers (or expansion in total test
numbers preserving the number of actual tests conducted) for very sparse prevalence regimes is available. Currently
proposed COVID-19 group testing schemes offer a gain up to 15X-20X scale-up. There is a good probability that the
required scale up to achieve massive scale testing might be greater in certain scenarios. We investigated if further
improvement is available, especially in sparse prevalence occurrence where outbreaks are needed to be avoided by

Conclusion: Our simulations show that sparse random pooling can provide improved efficiency gains compared to
conventional group testing or Reed-Solomon error correcting codes. Therefore, we propose that special designs for
different scenarios could be available and it is possible to scale up testing capabilities significantly.

Keywords: COVID-19 testing, Group testing, Sparse recovery algorithms

Background

The first half of the year 2020 has been in the midst
of the first wave of COVID-19 pandemic. It is expected
that, with the strict social distancing applications, the
spread of SARS-CoV-2 is going to be stabilized or sus-
tained at several geographies [1]. However, second wave
epidemics and resurgences are highly likely to occur [2].
Moreover, different geographies, due to segregation by
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administrative borders, asynchronously experience epi-
demic growths. While social distancing and quarantine
measures have been the primary factor to contain SARS-
CoV-2, widespread testing and aggressive contact tracing
are observed to be effective to isolate the spreaders from
vulnerable populations. According to this, widespread
scanning of populations or subpopulations is crucial to
locate and isolate epidemic clusters, especially by detect-
ing asymptomatic carriers. Excessive numbers of asymp-
tomatic carriers appear to be especially important as they
might be the most important factor in the difficulty of
lowering the reproductive numbers. Unbiased estimation
of the ratio of asymptomatic or presymptomatic spread-
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ers might be difficult to assess. Yet, statistics from small
or medium-sized cohorts and case studies indicate that
they might be as abundant as 10%-50% [3, 4]. These
ratios possess special importance regarding the case stud-
ies observing that asymptomatic/presymptomatic carriers
are likely to infect their contacts [5, 6].

Currently, PCR-based molecular testing primarily
serves as the standard diagnostics in the majority of
health systems. Since the infrastructure and financial
limitations dictate the allocation of resources for higher
priority cases, the capacity of the current molecular
testing convention does not allow high-throughput and
community level scans. Therefore, the focus of testing is
on hospitalized symptomatic cases and subsets of their
contacts reached via tracing. The diameter in the current
paradigm of shallow tracing is unlikely to reach the silent
clusters that might be as important as the symptomatic
cases in the spread of the disease.

Group testing is a feasible approach when the resources
are scarce and when a relatively low prevalence regime is
observed on the population [7]. It allows scanning large
populations by pooling samples and conducting orders
of magnitude lower number of tests while being able to
locate the positive cases. Starting from its initial practi-
cal use in US Army in the 1940s [8], screening recruits
for syphilis, group testing has been popularly employed in
several different fields where pooling/mixing and testing
was available to detect the defective elements. In general,
group testing algorithms seek for T = O(klogn) mea-
surements in order to correctly detect k positive cases
in n testing samples. Here, O(.) denotes that the mea-
surements are in the order of magnitude of the argu-
ment. Practical algorithms are shown to achieve T =
2.727% In (}) while k scales sublinearly as k = O (%) [9].
With an assumption that early phases of epidemic waves
or screening of asymptotic carriers would form popu-
lations of relatively low prevalence, conventional group
testing schemes can potentially provide significant gains
in testing capability.

Complying with the idea of employing group testing
in SARS-CoV-2 screening, Sinnott-Armstrong et al. [10]
recently proposed an adaptive scheme, pooling rows and
columns of PCR well-plates, and they showed that up to
10X efficiency gain could be achieved in 0.1%-5% preva-
lence band. Eberhardt et al. [11] used multistage group
testing with two or three rounds. Their results imply even
greater efficiency gains of 15X-20X around low preva-
lence bounds. While these are very practical and simple
schemes eliminating the requirements of robotic pipetting
needs and reducing the pipetting errors, more sophisti-
cated pooling schemes that can improve the efficiency
gains are available. Indeed, Shental et al. [12] used sam-
pling 48 pools out of 384 well-plate by Reed-Solomon
coding, and showed 8X efficiency gain around the band of
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1% prevalence. These schemes offer very significant scale-
ups in testing capacity, especially around mid-scale spar-
sity bands (i.e. 1%-5% prevalence). However, in potential
scenarios of achieving wide-spread or community level
scans with lower expected prevalence, further efficiency
gains would be required. Therefore, designing group test-
ing schemes aiming sparsity is beneficial to explore the
practical capabilities.

We employed group testing with a sparse random pool-
ing scheme and conventional group test decoding algo-
rithms both for exact and inexact recovery. Our simula-
tions showed that significant reduction in per case test
numbers (or expansion in total test numbers preserving
the number of actual tests conducted) for very sparse
prevalence regimes is available.

Methods

We designed a random-pooling based group testing
scheme for different laboratory setups including 96-, 384-
, and 1536-well plate options. Two different approaches
were considered i) two-pass adaptive testing for exact
recovery. ii) single-pass non-adaptive testing for approxi-
mate recovery of test results. For both approaches, we use
the same random pooling design.

Random pooling

Random pooling procedure samples a pooling procedure
from the space of m pools out of n samples by adding
each sample exactly to k pools. The distribution to pools
is selected without replicating the same pattern to be
able to distinguish samples. Also, the sampled pooling
matrices are intended to have low coherence, as low
coherence improves the rate (i.e. efficiency gain in this
setting) in sparse recovery problems [13]. The coherence
of a measurement matrix denotes the maximum inner
product of its column vector pairs, and it is associated
with the maximum number of pools a couple of sam-
ples coexist in our case. We achieve low coherence by
Metropolis sampling algorithm [14] with a modification
that acceptance is driven by coherence, rather than den-
sity. According to that, the pooling matrix is iteratively
perturbed via changing the pools that a given sample
is contributing to, with a small probability p. Perturbed
matrices are accepted with a probability proportional to
the decrease in coherence as suggested by Metropolis
sampling. This Monte-Carlo random walk in the pool-
ing matrix space is expected to design low coherence
random pooling procedures. The random pooling algo-
rithm is provided below, where m by n & denotes the
binary pooling matrix. ;) indicates inclusion of sam-

ple j in the i pool. ®.; denotes the i column of ®
and « is inversely related to the coherence of ® (i.e.
it attains k in minimum coherence and 0 in maximum
coherence).
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Algorithm 1: Random pooling. A pooling matrix
is randomly initialized (step 1), randomly perturbed
ensuring no two samples are pooled identically (steps
3-8), and the new pooling is accepted/rejected accord-
ing to Metropolis sampling. (steps 9-14)
INPUT: ® =0, =0,n, m, k, p
1: @ « for each sample i pick k random pools out of m
to set a distribution column, set the corresponding
rows of &,y to 1
2. while iteration_no < MAX ITERATION do
3:  whilei <ndo
4 CD:’elV)" < swap each nonzero element of ®,;
with a zero element with a probability p

X VT L FHew __ gHnew
5: ifd < Ly = P then
6: goto 4

7: end if

8: end while

9:

o = k — max {CIDE’:eiV)"TCDZ‘;V)V,Vi,]' <ni #j}

10: if‘”’;ﬂ > u ~ U(0,1) then

11: o < ", P <« PV

122 endif

13: end while

OUTPUT: Pooling matrix ® with m pools; each
sample is added to exactly k pools.

Figure 1 illustrates a toy example of the sampling scheme
for the set of 12 samples gathered in 6 pools, where each
sample is included in two pools (i.e. n = 12, m = 6, k =
2). The pooling is represented as a bipartite graph, and
the corresponding pooling matrix ® is shown. The pool-
ing schemes proposed by Sinnott-Armstrong et al. and
Eberhardt et al. could be considered as specific instances
of the proposed pooling scheme where k = 2 and k = 1
respectively.

Two-pass testing

This scheme concentrates on two rounds of testing. The
first test round employs random pooling and testing of
pooled samples. Confidently negative samples are elim-
inated using a possible positive detection algorithm. At
this point, a subset of the samples is determined as pos-
sible positives for further testing, and no false negatives
are eliminated. Testing the possible positives directly for
eliminating the false positives concludes the testing pro-
cess without false calls. Note that, perfect recovery in this
sense assumes single tests are accurate.

We have employed the straightforward “Definite Defec-
tives” algorithm [15] to detect the possible positives in
the first round. Once the possible positives are subject to
the second round, the remaining procedure includes the
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conventional “one test-one sample” approach. The proce-
dure is given as follows.

Algorithm 2: Two-pass testing (Definitive Defectives).
From all pooled measurements, possible positive sam-
ples are determined (steps 1-9) by removing definitive
negatives (steps 3-4) and definitive positives (steps
5-6,9). The second round determines the definitive
positives out of possible positives (step 10)

INPUT: y, Q%"
csetT =1{1,2,...
. while i < m do

if y; = 0 then
T=T\Q""
else if |QIT"W| = 1 then
Troundr = Tround1 Y Q{OW
end if
end while
T =T\ Trouna1
. Tround2 < Apply naive testing on T and record

positives in T;oy 40

OUTPUT: Tyyy5a1 Y Trounda-

yntand Troyna1 = 9

R A U A

—
[=}

Here, we refer to the binary vector y as the pooled test
results where 1s are the positive and Os are the negative
pool results. Q/°” represents the support set of the it
row in ® pooling matrix determined by random pooling
scheme, and T sets represent the set of positive candi-

dates.

Single-pass testing

Single-pass testing includes only the approximate decod-
ing of pooled samples in one round. We considered
Sequential Combinatorial Orthogonal Matching Pursuit
(COMP) algorithm [15] for decoding. According to this,
among the set of possible defectives, the minimal set
explaining the pooling test results is considered using a
greedy forward addition. This set is the predicted posi-
tives for the entire test population. Unlike the previous
approach, single-pass testing is vulnerable to false pos-
itives and negatives, whenever the pooling scheme is
underpowered to explain the actual population uniquely.

Here, similarly, we refer to the binary vector y as the
pooled test results. w” represents the support set of y, Q7%
represents the support set of i row in ®, Qf"l represents
the support set of i column in ®, and T sets represent
the set of positive candidates.

Since the pooling matrix design procedure is stochastic,
it is possible to design several different pooling schemes.
The decoding algorithms are driven by pooling matrices,
therefore two-pass and single-pass testing instances may
vary physically.
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Fig. 1 lllustration of a pooling scheme example. a 12 samples denoted by the letters A to L are mixed in 6 pools as shown in the bipartite graph
where each sample in included in 2 pools. b The pooling scheme is represented by the pooling matrix ®. ® is a binary adjacency matrix where the
columns represent the sample vertices, and rows represent the pool vertices. &y therefore indicates that j" sample is included in the i pool. The
support sets of the rows are represented by Q/° sets, whereas the support sets of the columns are represented by Q/“’/ sets
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Simulations
During our experiments, we conducted the simulations
under the following conditions. Random pooling was

Algorithm 3: Single pass testing (COMP). From
all pooling measurements definitive negative samples
(steps 3-4) and definitive positive samples (steps 5-6)
are determined and removed from the candidate set
(steps 2-10). Among the set of candidates, the mini-
mal set explaining the pooling test results is considered
using greedy forward addition (steps 11-16)

INPUT: y, Q/°%, Q¢! o
1: SetT ={1,2,...,n}and Typupa1 = 9

2. whilei < m do

3. ify; = 0 then

4 T=T\Q"

5. elseif |Qf"w| =1 then

6 Troundt = Tround1 U Q;OW

7 o =w\i

8 end if

9: end while

10: T=T\ Tround1

11: while o’ # ¢ do

12 ] = arg,min, ”a}y \ Q| v) e T}
13: Troundl = Troundl U7

14 T =T\j

15 o =\ %@’

16: end while

OUTPUT: Topnd1-

performed with p = 0.05 perturbation probability applied
to each sample-pool pairing independently for 100.000
iterations. For each pooling setup, sample sets were simu-
lated assuming a Bernoulli process where the probability
of a positive sample draw was estimated to be the preva-
lence. For two-pass testing, the mean efficiency gain is
reported at each prevalence sampled over a number of
independent simulations. In order to attain the detec-
tion performance of single-pass testing, the number of
pools were incremented with new pooling designs until
the perfect recovery of single tests was achieved at each
prevalence instance. Similarly, the mean performances of
a number of simulations were reported.

Results

In order to observe the performance of group testing
under different regimes, simulations under Bernoulli sam-
pling were repeated and reported. The prevalence range
between 0.0005 and 0.2 was chosen as the simulation
operating region. Efficiency gain, defined as the ratio of
tested subjects to the number of actual tests performed in
pools was used as the performance metric. Three pooling
strategies, each corresponding to a different plate oper-
ation were considered: 96-well plate, 384-well plate, and
1536-well plate.

Two-pass testing

In case of exact recovery of one sample-one test naive
testing, which would fix the sensitivity and specificity
of group testing approximately to that of PCR techni-
cal limitations, the two-pass procedure explained in the
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methods, referred to as “Definitive defectives” was con-
sidered. For 96-well plate set up, 10 pools are considered
for the first round group testing and each sample is rep-
resented exactly in three different pools. The preferred
number of pools was 15 with each sample being dis-
tributed to exactly 4 pools for 384-well plate setting, also
20 pools with each sample being distributed to exactly 4
different pools were considered for 1536-well plate set up.
The corresponding random pooling strategies construct
sparse mixing matrices which are expected to result in
good performance of decoding algorithms (i.e. detecting a
small number of possible positives with ideal specificity).
Consequently, greater efficiency gain values are expected
compared to conventional grouping.

In order to observe how this pooling strategy scales
for low prevalence scenarios compared to previously
proposed techniques, we considered the group testing
scheme suggested by Sinnott-Armstrong et al. (which we
refer to as “row-column grouping”) for the same setup.
Multistage testing strategy proposed by Eberhardt et al.
[11] was also implemented in the same setup. From sev-
eral two- or three-stage testing schemes, pools of 16 with
three stages (named as “Multistage P16S3”) and pools of
32 with two stages (named as “Multistage P32S52”) were
observed to be the most efficient strategies throughout the
prevalence spectrum. Therefore, we included these two in
our comparison. Finally, a well-known group testing strat-
egy proposed by Phatarfod and Sudbury [16], which is an
adaptive version of “row-column grouping” was consid-
ered as a reference. While underperforming in the small
plate setup (96-well plate), the proposed group testing
resulted in higher efficiency in sparse prevalence regimes
(i.e. <0.5%) for medium (384-well plate) and large plate
(1536-well plate) setups (Fig. 2). Especially, for the large
plate setting, the efficiency gain was observed to achieve
more than twice the rates of other schemes. Each observed
value is the recorded mean of 1000 independent simula-
tions. This came with the trade-off of underperforming in
denser areas (0.2% to 1% regions).

Single-pass testing

We have considered the scenarios in which the preser-
vation of naive test accuracy is not the primary concern.
A widespread scanning concept might be focusing on
determining the hot-spots within a population rather than
diagnosing each individual for COVID-19. In such a case,
test accuracy could be traded off in return of gains in test-
ing capacity. Since single-pass group testing schemes are
underdetermined systems analogous to compressed sens-
ing, reduction in the number of pools to be tested will
translate to reduction in testing accuracy, which corre-
sponds to the trade-off operation between efficiency gain
and test accuracy. To observe these characteristics we
conducted the simulations in similar prevalence ranges
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as the two-pass process. However, in this case, random
pools were decoded to sample test results in a single
pass using sSCOMP decoding as described in the meth-
ods section. The accuracy increase was recorded with
respect to increasing number of random pools at each
prevalence instance. Starting from the same setting with
two-pass testing pooling scheme, new pooling procedures
were sampled at each pooling expansion. The parame-
ter k, which corresponds to the number of pools that
a sample contributes to, was incremented by one at the
introduction of every 10 new pools.

As the performance metric, we chose sensitivity to
reflect the operation success of group testing scheme.
As expected, the specificity measures were close to 1
throughout the operational regions (Fig. 4). Figure 3 shows
the efficiency gain operations, indicating operation at
each sensitivity level as separate contours. Following sim-
ilar characteristics with two-pass testing, pooling from
larger well plates yields greater gains, especially for very
sparse regimes. Typically, the trend of equal-sensitivity
contours exhibits greater slopes as the prevalence gets
smaller, indicating better efficiency gain boosts for lower
sensitivity trade-off.

Accuracy of single-pass testing

Sequential COMP decoding employed for single-pass
decoding of group testing by random pooling operates on
a greedy algorithm, selecting a suboptimal minimal subset
satisfying the pooled test results. Clearly, the solutions are
not unique, and in case several linear combinations cover
the same support set of pools, the decoding is vulnerable
to errors. Lowering the number of random pools drives
the system to be more underdetermined, expecting a
greater number of errors on average. This can be observed
from our simulations. Observing the empirical results, the
specificity has never been experienced to be lower than
0.97, which is expected since the negative/positive dis-
tribution is unbalanced. This is also an indication that
the decoding is not overexploring the positives. A more
rigorous or liberal decoding scheme, allowing relaxations
such as linear programming might be further investigated
to observe if any improvement in decoding accuracy is
achievable empirically.

Single-pass vs. two-pass testing

Although single-pass and two-pass schemes presented
are not directly comparable since the former is a par-
tial recovery method and the latter is an exact recovery
method, it is interesting to compare their efficiency gains
where single-pass testing performs close to exact recovery.
According to our simulations, operation characteristics of
single-pass testing converges to row-column group test-
ing as the prevalence increases, and it operates close to
the proposed two-pass testing in low-prevalence regions
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Fig. 2 Efficiency gains of multi-pass group testing schemes Row-column testing defined by Sinnott-Armstrong et al. (row-column grouping),
multistage group testing proposed by Eberhardt et al., two-pass testing defined by Phatarfod and Sudbury, and the proposed random pooling
(Definitive Defectives) were simulated for 96-, 384-, and 1536-well plate setups at a range of prevalence scenarios

(Fig. 5). It might be possible to perform single-pass testing
with appropriate random pooling schemes even in high
prevalence regimes.

Figure 4 provides the mean efficiency gain performance
of the two proposed schemes. Roughly, the single pass
scheme approximates the gains of random pooling and
row-column pooling schemes at both sides of the preva-
lence spectrum. The single pass scheme appears to per-
form similar to two-pass complete recovery around near
errorless operation (e.g. sensitivity >0.99). While this is
practically preferable, as single-pass testing requires only
one round of testing being more efficient in time require-
ments, it might be more difficult to design a single-pass
test. It should be noted that each efficiency gain requires
different random pooling numbers for different preva-
lence regimes and a correct guess of prevalence should
be predicted beforehand. In case prevalence distribution
attains high variance, two-pass testing might be a safer
approach.

Figure 5 depicts the expansion rates, showing how many
folds the testing capacity can be expanded to include pre-
sumably negative dominant scan population (e.g. extend-
ing the tracing to not only symptomatic but also to asymp-
tomatic contacts) conducting the same number of tests.
As expected, it would be possible to achieve larger expan-
sions at low prevalences, especially with large plate setups.
On the other hand, still, room for a few-fold expansion
seems to be achievable around relatively large prevalences
such as 10%. This might be an indicator that group testing
could be a feasible operation at a large spectrum.

Single-pass testing vs. P-BEST testing

P-BEST testing was shown to perform accurately around
the band 0.2%-0.13% with 8X efficiency gain. While
P-BEST incorporates a specific Reed-Solomon error-
correcting code scheme for pooling, we ran simulations
around this band with similar aspects (i.e. each sample
contributes to exactly 6 pools in 384-well plate setting)



Nalbantoglu BMC Medical Research Methodology (2020) 20:176 Page 7 of 11
96-well plate 384-well plate

9 25 :
8

£7 54

© ©

G U]

g° g 15

b g

g3 G

g o 10
3

Prevalence

Efficiency Gain

1073
Prevalence

1072

102

1073
Prevalence

1536-well plate

—-0.96
—-0.84

-0.72
—-0.60
—-0.48
—-0.36
—-0.24
=-0.12

T-0.00
Sensitivity

Fig. 3 Efficiency gains of single-pass group testing. Decoding performed using sequential COMP for different number of pools were simulated for
96-, 384-, and 1536-well plate setups at a range of prevalence scenarios. As the number of pools reduces and the efficiency gain increases, the
sensitivity of the test reduces. Equal-sensitivity contours are shown in different color codings

to observe the efficiency gain rates around perfect recov-
ery operating points. According to the averages over 3000
simulations, random pooling performs similarly around
1% prevalence (Table 1). Note that this observation is
not based on practical experiments neglecting any phys-
ical noise source. In order to validate the results and
draw a confident conclusion, further studies and wet-lab
experiments are needed.

Discussion

Conducting an effective test, trace & isolate solution
might be the key for containing SARS-CoV-2 and an ele-
mental part of fighting against the current COVID-19
pandemic. Perhaps the most significant and challenging
issue is performing massive-scale tests. Asymptomatic
cases, being the possible silent culprits of undetected
infection clusters, are off the radar of conventional testing
procedures. In order to expand the radius of contact trac-
ing to subpopulation scan level or performing commu-
nity scans, given the current testing infrastructures and
resources, efficient group testing strategies are needed.
Currently proposed COVID-19 group testing schemes
offer a gain up to no more than 10X and 25X scale-up for

medium (0.5%-10%) and low (<0.5%) prevalence respec-
tively [10-12, 16]. There is a good probability that the
required scale up to achieve massive scale testing might
be greater in certain scenarios. We investigated if further
improvement is available, especially in sparse prevalence
occurrence where outbreaks are needed to be avoided by
population scans.

We have tested our proposed pooling schemes for stan-
dard 96-, 384-, and 1536-well plate settings. The reason
why testing schemes were restricted to standard plate
settings is the practical concern that manual or robotic
laboratory handling conventions generally follow standard
well setups and integration/adoption in these circum-
stances is more feasible. Our simulations indicate that the
greatest efficiency gains promised by the proposed pool-
ing schemes are achieved at very low prevalence rates
for 384- and 1536-well plate settings. This observation
leads to the fact that such a high-efficiency gain approach
should be limited to certain testing scenarios. The pro-
posed group testing, along with the other approaches
reviewed previously, would not be helpful in the diag-
nostic use for symptomatic cases around outbreak peaks,
for instance when the prevalence in a tested population
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is greater than 10%. On the other hand, a few cases at
the early phases of an outbreak are worth to detect, as
they might be the seeds for exponential growth of epi-
demic curves. Widespread testing for early detection of
emerging clusters therefore might be a powerful preven-
tive approach. Our results claim that random pooling
might be a preferable group testing strategy in similar
scenarios. Another use case might be scanning for asymp-
tomatic cases, separate from diagnostic testing on symp-
tomatic individuals. This might be either as extending
contact tracing to be able to test greater number of case
contacts or as a periodic scan of a population (e.g. health-
care workers and other risk groups). In case of community
scans in which individual-level sensitivity can be sacri-
ficed in return of spanning larger populations, single-pass
group tests might also be useful. We have observed that

for single-pass group testing, a small decrease in sensitiv-
ity could enable large efficiency gains at low prevalence
groups. Such a high-throughput group testing on rela-
tively large populations could be devised as a tool for
locating infection hot spots.

Assume that contact tracing in a relatively low preva-
lence cluster is being conducted using naive testing. It
might be useful to extend tracing by testing several-fold
more individuals but with the same number of tests, using
group testing. The extended subpopulation may be very
low prevalence, however, detecting any asymptomatic
case in it could be very valuable. We ran simulations
to investigate what should be the initial prevalence for
such an expansion opportunity, and how many folds of
an extension would be available in the proposed group
testing scheme. We observed that up to 60X expansion
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Fig. 5 Efficiency gains of single-pass and two-pass schemes at different prevalences. Sensitivity and Specificity of the proposed single-pass testing at
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is available around 2%-3% prevalence band (Fig. 6). This
result might be an implication that large scale contact
tracing might be possible at early forming clusters.

It should be kept in mind that our experiments are
simulations designed on two major assumptions. First,
we assumed that pooling will not attenuate the detec-
tion efficiency of molecular detection. Lohse et al. [17]
and Yelin et al. [18] independently showed that pooling
a single positive SARS-CoV-2 sample with tens of nega-
tive samples does not harm detectability of positives in
case of RT-qPCR testing. The pooling size in our simu-
lations does not exceed the experimented limits, so we
believe the proposed pooling schemes should act simi-
larly in practical settings. Our second assumption is that
the molecular tests are accurate enough to detect the

Table 1 Single-pass testing vs. P-BEST testing

Prevalence 0.26% 0.52% 0.78% 1.04% 1.3%
P-BEST 8X 8X 8X 8X 8X
Single-pass 16X 10.66X 8X 8X 6X

samples without errors. Therefore, all simulations are per-
formed for a noiseless scenario. While the actual picture
might not comply with this assumption, the experiments
ran with P-BEST approach indicate that the imperfec-
tion of RT-qPCR tests does not have a negative effect on
group testing. In fact, the encoding procedures of mix-
ing matrices might even work as error-correcting codes
for low prevalence. However, further studies and wet-
laboratory experiments should be conducted to support
this claim.

Another aspect of group testing is that the efficiency
gains mentioned in this and previous studies do not
translate as linear gains in SARS-CoV-2 testing economy.
Group testing only amplifies the number of tests, how-
ever previous steps of sampling, logistics, and any sample
preparation steps remain unscaled. Feasibility of pre-
pooling operations is out of the scope where it might be
another serious concern. Moreover, group testing might
be subject to greater use of consumables (e.g. more pipet-
ting), imposing the risk of mixing errors or the need for
robotics systems.



Nalbantoglu BMC Medical Research Methodology (2020) 20:176 Page 10 of 11
96-well plate 384-well plate
10
—— Row-column grouping
25 A Definite Defectives
8 —— COMP >95% Sn
% % 20 1
o o
c 6 =
2 9]
< c
© ©
3 4 o
a & 104
—— Row-column grouping 5
27 Definite Defectives
—— COMP >95% Sn
T f 0 - . T
1072 107t 10-2 10-1
Prevalence Prevalence
1536-well plate
60 1 —— Row-column grouping
Definite Defectives
50 4 —— COMP >95% Sn
[
5 40
o
5
‘& 30
C
©
Q.
X 20 e
10 4
0 -
102 1071
Prevalence

to asymptomatic contacts) conducting the same number of tests

Fig. 6 Expansion rates of single-pass and two-pass schemes at different prevalences. The expansion rates, showing how many folds the testing
capacity can be expanded to include presumably negative dominant scan population (e.g. extending the tracing to not only symptomatic but also

Although the current popular approach of COVID-19
testing is RT-qPCR based molecular tests, clearly group
testing is not limited to PCR based molecular techniques.
Any testing scheme preserving positivity as well as lack
of signals in the absence of positives while combining
samples in pools can be trivially integrated to group
testing approaches. IgC/IgM based serological tests or
any prospective test strategies (e.g. CRISPR-Cas12 based
testing [19]) should be considered for large scale test-
ing/scanning with group testing under appropriate cir-
cumstances. It should be noted that the current concept
of group testing relies on recovering the actual sample
profile from binary outcomes of pooled tests. Testing
schemes allowing quantitative outputs might be possi-
ble and further quantitative information might enable
unprecedented efficiency gains. This opportunity can be
hypothesized following the results of compressed sens-
ing literature. For example, for the case of Sudocodes
[20], at a prevalence of 0.1%, 1 Million subjects can be

scanned by performing under 10.000 tests even with per-
fect recovery. Of course, this requires very precise quanti-
tative and unique measures for each test subject. It might
be a promising research direction to investigate such
testing options. For example, shallow shotgun sequenc-
ing allowing positive signals while pronouncing specific
sequences belonging to each sample could be a candidate
for ultra-high throughput group testing. Proposed group
testing algorithms assume and simulate under the circum-
stances that each sampled instance is independent. On
the contrary, we know that COVID-19 sampling is mainly
conducted on populations with social contacts, violating
the independence assumptions. Sophisticated decoding
algorithms informed by metadata might perform supe-
rior, allowing greater efficiency gains, while complicating
the overall testing procedure in practice. Nevertheless,
we believe that even in primitive forms, group testing is
a promising direction for efficient allocation of testing
resources that should be considered for practical use.
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Conclusions

Our simulations show that sparse random pooling can
provide improved efficiency gains compared to conven-
tional group testing or Reed-Solomon error-correcting
codes. Therefore, we propose that special designs for dif-
ferent scenarios could be available and it is possible to
scale up testing capabilities significantly.
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