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curves due to outcome misclassification
through Bayesian analysis of time-series of
laboratory test results: case study of COVID-
19 in Alberta, Canada and Philadelphia,
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Abstract

Background: Despite widespread use, the accuracy of the diagnostic test for SARS-CoV-2 infection is poorly
understood. The aim of our work was to better quantify misclassification errors in identification of true cases of
COVID-19 and to study the impact of these errors in epidemic curves using publicly available surveillance data from
Alberta, Canada and Philadelphia, USA.

Methods: We examined time-series data of laboratory tests for SARS-CoV-2 viral infection, the causal agent for
COVID-19, to try to explore, using a Bayesian approach, the sensitivity and specificity of the diagnostic test.

Results: Our analysis revealed that the data were compatible with near-perfect specificity, but it was challenging to
gain information about sensitivity. We applied these insights to uncertainty/bias analysis of epidemic curves under
the assumptions of both improving and degrading sensitivity. If the sensitivity improved from 60 to 95%, the
adjusted epidemic curves likely falls within the 95% confidence intervals of the observed counts. However, bias in
the shape and peak of the epidemic curves can be pronounced, if sensitivity either degrades or remains poor in
the 60–70% range. In the extreme scenario, hundreds of undiagnosed cases, even among the tested, are possible,
potentially leading to further unchecked contagion should these cases not self-isolate.

Conclusion: The best way to better understand bias in the epidemic curves of COVID-19 due to errors in testing is
to empirically evaluate misclassification of diagnosis in clinical settings and apply this knowledge to adjustment of
epidemic curves.
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Introduction
It is well known that outcome misclassification can bias
epidemiologic results yet is infrequently quantified and
adjusted for in results. In the context of infectious dis-
ease outbreaks, such as during the COVID-19 pandemic
of 2019–20, false positive diagnoses may lead to a waste
of limited resources, such as testing kits, hospital beds,
and absence of the healthcare workforce. On the other
hand, false negative diagnoses contribute to uncontrolled
spread of contagion, should these cases not self-isolate.
In an ongoing epidemic, where test sensitivity (Sn) and
specificity (Sp) of case ascertainment are fixed, preva-
lence of the outcome (infection), determines whether
false positives or negatives dominate. For COVID-19,
Goldstein & Burstyn show that suboptimal test Sn des-
pite excellent Sp results in an overestimation of cases in
the early stages of an outbreak, and substantial under-
estimation of cases as prevalence increases to levels seen
at the time of writing [1]. However, understanding the
true scope of the pandemic depends on precise insights
into accuracy of laboratory tests used for case confirm-
ation. Undiagnosed cases are of particular concern; they
arise from untested persons who may or may not have
symptoms (under-ascertainment) and from errors in
testing among those selected for the test. We focus on
misclassified patients only due to errors in tests that
were performed as part of applying the World Health
Organization’s case definition [2]. Presently, the accuracy
of testing for SARS-CoV-2 viral infection, the causal
agent for COVID-19, is unknown in Canada and the
USA, but globally it is reported that Sp exceeds Sn [3–
5].
In a typical scenario, clinical and laboratory validation

studies are needed to fully quantify the performance of a
diagnostic assay (measured through Sn and Sp). How-
ever, during a pandemic, limited resources are likely to
be allocated to testing and managing patients, rather
than performing the validation work. After all, imperfect
testing can still shed a crude light on the scope of the
public health emergency. Indeed, counts of observed
positive and negative tests can be informative about Sn
and Sp, because certain combinations of these parame-
ters are far more likely to be compatible with data and
reasonable assertions about true positive tests. In gen-
eral, more severe cases of disease are expected at the on-
set of an outbreak (and reflected in tested samples as
strong clinical suspicion for the test produces higher
likelihood of having the disease) but the overall preva-
lence in the population would remain low. Then, as the
outbreak progresses with more public awareness and
consequently both symptomatic and asymptomatic
people being tested, the overall prevalence of disease is
expected to rapidly increase while the severity of the dis-
ease at a population level is tempered. It is reasonable to

expect, as was indeed reported anecdotally early in the
COVID-19 outbreak, for laboratory tests to be inaccur-
ate, because the virus itself and its unique identifying
features exploited in the test are themselves uncertain,
and laboratory procedures can contain errors ahead of
standardization and regulatory approval. Again, anec-
dotally, Sn was supposed to be worse than Sp, which is
congruent with reports of early diagnostic tests from
China [4, 5], with both Sn and Sp improving as the la-
boratories around the world rushed to perfect testing
[6–8] to approach the performance seen in tests for
similar viruses [9, 10]. Using publicly available time-
series data of laboratory testing results for SARS-CoV-2
and our prior knowledge of infectious disease outbreaks,
we may be able to gain insights into the true accuracy of
the diagnostic assay.
Thus, we pursued two specific aims: (a) to develop a

Bayesian method to attempt to learn from publicly avail-
able time-series of COVID-19 testing about Sn and Sp
of the laboratory tests and (b) to conduct a Monte Carlo
(probabilistic) sensitivity analysis of the impact of the
plausible extent of this misclassification on bias in epi-
demic curves.

Methods
Sharing
Data and methods can be accessed at https://github.-
com/paulgstf/misclass-covid-19-testing; data are also
displayed in Appendix A in the Supplemental Material.

Data
We digitized data released by the Canadian province of
Alberta on 3/28/2020 from their “Fig. 6: People tested
for COVID-19 in Alberta by day” under “Laboratory
testing” tab [11]. Samples (e.g., nasopharyngeal (NP)
swab; bronchial wash) undergo nucleic acid testing
(NAT) that use primers/probes targeting the E (envelope
protein) (Corman et al. 2020) and RdRp (RNA-
dependent RNA polymerase) (qualitative detection
method developed at ProvLab of Alberta) genes of the
COVID-19 virus. The data were digitized as shown in
Table A1 of Appendix A in the Supplemental Material.
The relevant data notes are reproduced in full here:

“Data sources: The Provincial Surveillance Informa-
tion system (PSI) is a laboratory surveillance system
which receives positive results for all Notifiable Dis-
eases and diseases under laboratory surveillance
from Alberta Precision Labs (APL). The system also
receives negative results for a subset of organisms
such as COVID-19. … Disclaimer: The content and
format of this report are subject to change. Cases
are under investigation and numbers may fluctuate
as cases are resolved. Data included in the
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interactive data application are up-to-date as of
midday of the date of posting.”

Data from the city of Philadelphia were obtained on 03/
31/2020 [12]. It was indicated that “test results might
take several days to process.” Most testing is PCR-based
with samples collected from an NP swab, performed at
one of the three labs (State Public Health, Labcorps,
Quest). In addition, some hospitals perform this test
using ‘in-house’ PCR methods. There is a perception
(but no empirical data available to us) that Sn is around
0.7 and there are reports of false negatives based on clin-
ical features of patients consistent with COVID-19 dis-
ease. Issues arise from problems with specimen
collection and timing of the collection, in addition to
test performance characteristics. The data were digitized
as shown in Table A2 in Appendix A in the Supplemen-
tal Material.

Bayesian method to infer test sensitivity and specificity
A brief description of the modelling strategy follows
here, with full details of both the model and its imple-
mentation given in Appendix B in the Supplemental Ma-
terial. Both daily prevalence of infection in the testing
pool and daily test sensitivity are modelled as piecewise-
linear on a small number of adjacent time intervals (four
intervals of equal width, in both examples), with the
interval endpoints referred to as “knots” (hence there are
five knots, in both examples). The prior distribution for
prevalence is constructed by specifying lower and upper
bounds for prevalence at each knot, with a uniform dis-
tribution in between these bounds. The prior distribu-
tion of sensitivity is constructed similarly, but with a
modification to encourage more smoothness in the vari-
ation over time (see Appendix B in the Supplemental
Material for full details). The test specificity is consid-
ered constant over time, with a uniform prior distribu-
tion between specified lower and upper bounds.
With the above specification, a posterior distribution

ensues for all the unknown parameters and latent vari-
ables given the observed data, i.e., given the daily counts
of negative and positive test results. This distribution de-
scribes knowledge of prevalence, sensitivity, specificity,
and the time-series of the latent Yt, the number of truly
positive among those tested on the t-th day. Thus, we
learn the posterior distribution of the Yt time-series, giv-
ing an adjusted series for the number of true positives in
the testing pool, along with an indication of uncertainty.
As discussed at more length in Appendix B in the Sup-

plemental Material, this model formulation neither rules
in, nor rules out, learning about test sensitivity and spe-
cificity from the reported data. Particularly in a high spe-
cificity regime, the problem of separating out infection
prevalence and test sensitivity is mathematically

challenging. The data directly inform only the product
of prevalence and sensitivity. Trying to separate the two
can be regarded statistically as an “unidentified” problem
(while mathematicians might speak of an ill-posed in-
verse problem, or engineers might refer to a “blind
source separation” challenge). However, some circum-
stances might be more amenable to some degree of sep-
aration. In particular, with piecewise-linear structure for
sensitivity and prevalence, strong quadratic patterns in
the observed data, if present, could be particularly help-
ful in guiding separation. On the other hand, if little or
no separation can be achieved, the analysis will naturally
revert back to a sensitivity analysis, with the a priori un-
certainty about test sensitivity and infection prevalence
being acknowledged.
Some of the more reliable PCR-based assays can

achieve near-perfect Sp and Sn of around 0.95 [3, 6–8]. .
We expected Sp to be high and selected a time-invariant
uniform prior bounded by 0.95 and 1. However, early in
the COVID-19 outbreak problems with the sensitivity of
the diagnostic test were widely reported owing to speci-
men collection and reagent preparation, but not quanti-
fied. Based on these reports, we posited a lower bound
on prior Sn of 0.6 and an upper bound of 0.9. We can-
not justify a higher lower bound on Sn, since obtaining a
sample is challenging as the virus may not be detectable
in the cultured area based on timing of infection, despite
replicating in other parts of the respiratory tract. Also,
known variation in testing strategy over time could drive
variation in Sn over time. Consequently, we adopted a
flexible data-driven approach by allowing sensitivity to
change over time, within the specified range (see Appen-
dix B in the Supplemental Material). The prevalence of
truly infected among those tested likely changed over
time as well -- for example due to prioritization of test-
ing based on age, occupation, and morbidity [13] -- but
this is difficult to quantify, as it differs from population
prevalence of infected that would be “seen” by a random
sample (governed by known population dynamics
models). Thus, our model also allows this prevalence to
vary over time across a broad range.

Monte Carlo (probabilistic) uncertainty/bias analysis of
epidemic curves
We next examined how much more we could have
learnt from epidemic curves if we knew sensitivity of la-
boratory testing. To do so, we applied insights into the
plausible extent of sensitivity and specificity to re-
calculate epidemic curves for COVID-19 in Alberta,
Canada. Data on observed counts versus presumed inci-
dent dates (“date reported to Alberta Health”) was ob-
tained on 3/28/2020 from their “Fig. 3: COVID-19 cases
in Alberta by day” under “Case counts” tab [11]. The
count of cases is shown in Table A1 as Ct

* and they are

Burstyn et al. BMC Medical Research Methodology          (2020) 20:146 Page 3 of 10



matched to dates t (same as dates of laboratory tests).
We also repeated these calculations with data available
for City of Philadelphia, under a strong assumption that
date of tests is the same as date of onset, i.e. Yt

* = Ct
*.

We removed March 30–31, 2020, counts because of a
reported delay of several days in laboratory tests.
For each observed count of incident cases Ct

*, we esti-

mated true counts Ct = Ct
*/ fSn under the assumption

that specificity is indistinguishable from perfect. Here fSn
is the assumed sensitivity for the purpose of uncertainty
analysis, to not be confused with the posterior distribu-
tion of Sn derived in Bayesian modelling. We considered
a situation of no time trend in line with above findings,
as well as sensitivity either improving (realistic best
case), or degrading (pessimistic worst case). We simu-

lated various values of fSn using Beta distribution ranging
in means from 0.60 to 0.95, with a fixed standard devi-
ation of 0.05 (parameters set using https://www.desmos.
com/calculator/kx83qio7yl). It is apparent that epidemic
curves generated in this manner will have higher counts
than the observed curves, and our main interest is to il-
lustrate how much the underestimation can bias the de-
piction. Our uncertainty/bias analysis only reflects
systematic errors for illustrative purposes and under the
common assumptions (and experience) that they dwarf
random errors. Computing code in R (R Foundation for
Statistical Computing, Vienna, Austria) for the uncer-
tainty analysis is in Appendix C in the Supplemental
Material.

Results
Inference about sensitivity and specificity
In both jurisdictions, there is evidence of non-linearity
in the observed proportion of positive tests (Fig. 1), justi-
fying our flexible approach to variation of sensitivity and

prevalence that can exhibit a quadratic pattern in ob-
served prevalence between knots. The data in both juris-
dictions is consistent with the hypothesis that the
number of truly infected is being under-estimated, even
though observed counts tend to fall within 95% credible
intervals of posterior distribution of the counts of true
positive tests (Fig. 2). The under-diagnosis is more pro-
nounced when there are both more positive cases and
the prevalence of positive tests is higher, i.e. in Philadel-
phia relative to Alberta. In Philadelphia, the posterior of
prevalence was between 5 and 24% (100’s of positive
tests a day in late March) but in Alberta, the median of
the posterior of prevalence was under 3% (30 to 50 posi-
tive tests a day in late March). This is not surprising be-
cause the number of false negatives is proportional to
observed cases for the same sensitivity. The specificity
appears to be high enough for the observed prevalence
to produce negligible numbers of false positives, with
false negatives dominating. There was clear evidence of
shift in posterior distribution of specificity from uniform
to favouring values > 0.98 (Fig. 3). In Alberta, posterior
distribution of Sp was centered on 0.997 (95% credible
interval (CrI): 0.993, 0.99995), and in Philadelphia it had
a posterior median of 0.984 (95%CrI: 0.954, 0.999). Our
analysis indicates that under our models there is little
evidence in time-series of laboratory tests about either
the time trend or magnitude of sensitivity of laboratory
tests in either jurisdiction (Fig. 4). Posterior distributions
are indistinguishable from the priors, such that we are
still left with an impression that sensitivity of COVID-19
tests can be anywhere between 0.6 and 0.9, centered
around 0.75. One can speculate on the departure of the
posterior distribution from uniform prior given that the
posterior appears concentrated somewhat around the
prior mean of 0.75 (more lines in Fig. 4 near the mean
than the dotted edges that bound the prior). However,

Fig. 1 Proportion of observed positive tests in time with 95% confidence intervals; knots between which sensitivity and true prevalence were
presumed to follow linear trends are indicated by red triangles
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any such signal is weak and there is no evidence of a
time-trend that was favoured by the model.

Uncertainty in epidemic curves due to imperfect testing:
Alberta, Canada
Figure 5 presents the impact on the epidemic curve of
degrading sensitivity that is constant in time. As ex-
pected, when misclassification errors increase, uncer-
tainty about epidemic curves also increases. There is an
under-estimation of incident cases that is more apparent
later in the epidemic when the numbers rise. Figure 6
indicates how, as expected, if sensitivity improves over
time (green lines), then the true epidemic curve is ex-
pected to be flatter than the observed. It also appears
that observed and true curves may well fall within the
range of 95% confidence intervals around the observed
counts (blue lines). If sensitivity decreases over time
(brown lines), then the true epidemic curve is expected
to be steeper than the observed. In either scenario, there

can be an under-counting of cases by nearly a factor of
two, most apparent as the incidence grows, such that on
day March 24, 2020 (t = 19), there may have been almost
120 cases vs. 62 observed. This is alarming, because mis-
diagnosed patients can spread infection if they have not
self-isolated (perhaps a negative test results provided a
false sense of security) and it is impossible to know who
they are among thousands of symptomatic persons
tested around that time per day (Table A1).

Uncertainty in epidemic curves due to imperfect testing:
Philadelphia, USA
Figure 7 presents the impact on the epidemic curve of
degrading Sn that is constant in time. As in Alberta,
when misclassification errors increase, uncertainty about
epidemic curves also increases. It is also apparent that
the shape of the epidemic curve, especially when counts
are high, can be far steeper than that inferred assuming
perfect testing. Figure 8 indicates that if sensitivity

Fig. 2 Observed count of positive tests for COVID-19 (open diamond) versus posterior distributions of counts, adjusted for misclassification (solid
circles as means and lines representing 95% credible intervals)

Fig. 3 Posterior distributions of specificity of laboratory test for COVID-19 with the 95% (equal-tailed) credible interval indicated

Burstyn et al. BMC Medical Research Methodology          (2020) 20:146 Page 5 of 10



improves over time (green lines), then the true epidemic
curve is expected to be practically indistinguishable from
the observed one in Philadelphia: e.g. it is within random
variation of observed counts represented by 95% confi-
dence intervals (blue lines). This is comforting, because
this seems to be the most plausible scenario of improve-
ment in time in quality of testing (identification of truly
infected). However, if sensitivity decreases over time
(brown lines), then the under-counting of cases by the
hundreds in late March 2020 cannot be ruled out. We
again have the same concern as for Alberta:

misdiagnosed patients can spread infection unimpeded
and it is impossible to know who they are among the
hundreds of symptomatic persons tested in late March
2020 (Table A2).
In all examined scenarios, in both Alberta and Phila-

delphia, the lack of sensitivity in testing seems to matter
far less when the observed counts are low early in the
epidemic. The gap between observed and adjusted
counts grows as the number of observed cases increases.
This reinforces the importance of early testing, at least
with respect to describing the time-course of the

Fig. 4 Posterior distributions of sensitivity of of laboratory test for COVID-19 in time (grey), posterior mean (red), and boundaries of priors
(dotted); because values of sensitivity vary in time, we present samples from different points in time as lines

Fig. 5 Uncertainty in the epidemic curve of COVID-19 on March 28, 2020 in Alberta, Canada, due to imperfect sensitivity (Sn) with standard
deviation 5%; assumes specificity 100%: time-invariant sensitivity
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epidemic, even with imperfect technology (Goldstein &
Burstyn, 2020).

Discussion
Given the current uncertainty in the accuracy of the
SARS-CoV-2 diagnostic assays, we tried to learn about

sensitivity and specificity using the time-series of labora-
tory tests and time trends in time test results. Although
we are confident that typical specificity exceeds 0.98,
there is very little learning about sensitivity from prior to
posterior. However, it is important to not generalize this
lack of learning about sensitivity, because it can occur

Fig. 6 Uncertainty in the epidemic curve of COVID-19 on March 28, 2020 in Alberta, Canada, due to imperfect sensitivity (Sn) with standard
deviation 5%; assumes specificity 100%: increasing or decreasing sensitivity in time

Fig. 7 Uncertainty in the epidemic curve of COVID-19 on March 31, 2020 in Philadelphia, USA, due to imperfect sensitivity (Sn) with standard
deviation 5%; assumes specificity 100%: time-invariant sensitivity
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when stronger priors on prevalence are justified and/or
when there are more pronounced trends in prevalence
of positive tests. We therefore encourage every jurisdic-
tion with suitable data to attempt to gain insights into
accuracy of tests using our method: now that the
method to do so exists, it is simpler and cheaper than la-
boratory and clinical validation studies. However, valid-
ation studies, with approaches like the one illustrated in
Burstyn et al., are still the most reliable means of deter-
mining accuracy of a diagnostic test [14].
Knowing sensitivity and specificity is important as

demonstrated in uncertainty/bias analysis of impact on
epidemic curves under some optimistic assumptions of
near-perfect specificity and reasonable range of sensitiv-
ity. The observed epidemic curves may bias estimates of
the effective reproduction number (Re) and magnitude
of the epidemic (peak) in unpredictable directions. This
may also have implications for understanding the pro-
portion of the population non-susceptible to COVID-19.
As researchers attempt to develop pharmaceutical
prophylaxis (i.e., a vaccine) combined with a greater
number of people recovering from SARS-CoV-2 infec-
tion, having insight into the herd threshold will be im-
portant for resolving current and future outbreaks.
Calculations such as the basic and effective reproductive
number, and the herd threshold depend upon the accur-
acy of surveillance data described in the epidemic
curves.
As the title suggests, we view the lab time-series and

the epidemic curve as two distinct entities: Figs. 1

through 4 are based on the former. This distinction is
important to stress, because a lot of the public-facing
dashboards etc. are plotting new cases by report date in-
stead of, or in addition to, by symptom onset date; both
are commonly labelled as “epidemic curves” while
strictly only the latter should be referred to as such. We
emphasise this distinction by adopting different notation
to count positive test results on tth day t as Yt vs. inci-
dent cases on tth day Ct. Future work is envisioned
which links Yt and Ct., so that joint inference could be
undertaken for data from jurisdictions which report both
series. In situations where only the lab-testing series is
available, external prior knowledge could be used to de-
scribe implications for the epidemic curve. As an ex-
ample, while the modelling in Dehning et al. [15] is in a
very different direction, one component of their model
is an informative prior distribution on the reporting
delay between infection date and lab report date.
Limitations of our approach include the dynamic na-

ture of data that changes daily and may not be perfectly
aligned in time due to batch testing. There are some dis-
crepancies in the data that should be resolved in time,
like fewer cases tested positive than there are in epi-
demic curve in Alberta, but the urgency of the current
situation justifies doing our best with what we have now.
We also make some strong ad hoc assumptions about
breakpoints in segmented regression of time-trends in
sensitivity and prevalence, further assuming that the
same breakpoints are suitable for trends in both parame-
ters. Although not as much of an issue based on our

Fig. 8 Uncertainty in the epidemic curve of COVID-19 on March 31, 2020 in Philadelphia, USA, due to imperfect sensitivity (Sn) with standard
deviation 5%; assumes specificity 100%: increasing or decreasing sensitivity in time
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analysis, we do need to consider imperfect specificity,
creating false positives, albeit nowhere near the magni-
tude of false negatives in the middle of an outbreak. This
results in wasted resources. In ideal circumstances we
employ a two-stage test: a highly sensitive serological
assay that if positive triggers a PCR-based assay. Two-
stage tests would resolve a lot of uncertainty and specu-
lation over a single PCR test combined with signs and
symptoms. Indeed, this is the model used for diagnosis
of other infectious diseases, such as HIV and Hepatitis
C. Our work also only focuses on validity of laboratory
tests, not sensitivity and specificity of the entire process
of identification of cases that involves selection for test-
ing via a procedure that is designed to induce systemic
biases relative to the population.

Conclusions
We conclude that it is of paramount importance to val-
idate laboratory tests and to share this knowledge, espe-
cially as the epidemic matures into its full force. Insights
into ascertainment bias by which people are selected for
tests and are then used to estimate epidemic curves are
likewise important to obtain and quantify. Quantification
of these sources of misclassification and bias can lead to
adjusted analyses of epidemic curves that can help make
more appropriate public health policies.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-020-01037-4.
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Abbreviations
Yt
*: Count of persons who tested positive at time t; nt: Count of persons

tested at time t (observed from surveillance data); Yt: True count of persons
who tested positive at time t (latent); Ct

*: Count of persons having onset of
symptoms at time t and who have tested positive; Ct: True count of persons
having onset of symptoms at time t and who have tested positive (latent);
Snt: Ensitivity of test P(Yt

* = 1|Yt = 1) at time t (subscript t is suppressed for
simplicity in text); Spt: Pecificity of test P(Yt

* = 0|Yt = 0) at time t (subscript t is
suppressed for simplicity in text); eSn: Sensitivity of ascertainment of incident

case, P(Ct
* = 1|Ct = 1); eSp: Specificity of ascertainment of incident case, P(Ct

* =
0|Ct = 0)
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