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Spatiotemporal multi-disease transmission
dynamic measure for emerging diseases:
an application to dengue and zika
integrated surveillance in Thailand
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Abstract

Background: New emerging diseases are public health concerns in which policy makers have to make decisions in the
presence of enormous uncertainty. This is an important challenge in terms of emergency preparation requiring the
operation of effective surveillance systems. A key concept to investigate the dynamic of infectious diseases is the basic
reproduction number. However it is difficult to be applicable in real situations due to the underlying theoretical assumptions.

Methods: In this paper we propose a robust and flexible methodology for estimating disease strength varying in space and
time using an alternative measure of disease transmission within the hierarchical modeling framework. The proposed
measure is also extended to allow for incorporating knowledge from related diseases to enhance performance of
surveillance system.

Results: A simulation was conducted to examine robustness of the proposed methodology and the simulation results
demonstrate that the proposed method allows robust estimation of the disease strength across simulation scenarios. A real
data example is provided of an integrative application of Dengue and Zika surveillance in Thailand. The real data example
also shows that combining both diseases in an integrated analysis essentially decreases variability of model fitting.

Conclusions: The proposed methodology is robust in several simulated scenarios of spatiotemporal transmission force with
computing flexibility and practical benefits. This development has potential for broad applicability as an alternative tool for
integrated surveillance of emerging diseases such as Zika.
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Background
The nature of infectious diseases has been changing rap-
idly in conjunction with dramatic societal and environ-
mental changes. This is a substantial challenge in terms
of emergency preparedness requiring the implementa-
tion of a wide range of surveillance policies. The recent
emergence of Zika outbreaks associated with birth de-
fects prompted the World Health Organization (WHO)
to declare a public health emergency of international
concern in February 2016 [1]. After that, there has been

an explosion in research and planning as the global
health community has turned their attention to under-
standing and controlling Zika virus. However, the lack of
important information needed to assess the global health
threat from the virus still remains [2]. The behavior of
an infectious disease is often formidable or sometimes
not feasible to be evaluated by conducting experiments
with real communities. As a result, mathematical models
explaining the transmission of infectious diseases are a
valuable tool for planning disease-management policies.
An important question when a new emerging disease

occurs is the disease transmission mechanism and how
infectious the disease is. A key concept in epidemiology to
indicate the scale and speed of spread in a susceptible
population is the transmissibility of the infection,
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characterized by the basic reproduction number, R0. This
quantity has a definition of longer-term endemicity in a
given population (R0 < 1 stops an epidemic) [3]. An exten-
sive range of estimation methods have been proposed (see
examples [4, 5]). Although the basic reproduction number
can be useful for understanding the transmissibility of an
infectious disease, the methods based on fitting determinis-
tic transmission models are often difficult to use and
generalize in practice due to context-specific assumptions
which often do not hold [6, 7].
It is of practical importance to consider a computationally

feasible and robust methodology to evaluate the force of in-
fection. It has been proposed that the time course of an epi-
demic can be partly achieved by estimating the effective
(instantaneous) reproduction number [8, 9]. However, since
the contact rates among people may differ due to differences
the local environment, human behavior, vector abundance,
and, potentially, interactions with other viruses, disease
transmissibility will vary across locations as well. Although
spatial heterogeneity has been considered (see examples [10,
11]), the reproduction numbers are estimated separately for
single areas without accounting for spatial variation and
overdispersion in modeling. Due to very limited information
when new emerging infection initially occurs, it is natural to
look for strategies that mirror relevant information. Surveil-
lance systems have been operated singly for various types of
infectious diseases, however with multiple streams of geo-
coded disease information available it is important to be able
to take advantage of the multivariate health data. The bene-
fits of multivariate surveillance lie in the ability to observe
concurrency of patterns of disease and to allow conditioning
of one disease on others. To assist public health practi-
tioners to assess disease transmissibility in field settings, we
thus develop the proposed methodology to allow for incorp-
orating spatiotemporal knowledge from related diseases to
enhance performance of surveillance system which was not
considered in previous studies.
The aim of this study is to develop a generic and robust

methodology for estimating spatiotemporally varying trans-
missibility that can be instantaneously computed for each
location and time within a user-friendly environment for
real-time surveillance. Not only our method has a practical
interpretation with theoretical foundation but also can be
understood and applied by non-technical users. The pro-
posed method is defined in the next section with a simula-
tion study to demonstrate robustness of the methodology.
A case study is also provided of an application of integrative
surveillance of Dengue and Zika virus activities in Thailand.

Methods
Spatiotemporal measure of disease transmission
The basic reproduction number is one of the principal
concepts widely used as an epidemiological measure of the
transmission potential which is theoretically defined as the

number of secondary infections produced by a single
infectious individuals in a susceptible population [3, 12].
However, not withstanding the issues with underlying
theoretical assumptions such as population susceptibility
and dynamic nature of infectious diseases, the basic
reproduction number is difficult to apply in real situations.
For instance, few epidemics are only ever observed when a
new infection enters in a susceptible population in which
the disease can also persist but had not been or able to be
detected for a period of time. This situation violates a
primary assumption about the ‘at risk’ population which
commonly appears in new emerging diseases such as Zika.
Another example is that the nature of infectious diseases is
dynamic and should be consistently monitored whereas the
basic reproduction number is an infinite measure which
then fails to satisfy the dynamic behavior of infections.
Therefore, we need to be cautious about the underlying
model assumptions when applying the concept. Otherwise,
it could lead to inappropriate disease-management policies
or even uncontrollable outbreaks (see more discussion in
[6, 7, 13]). In this paper we propose an alternative measure
of spatiotemporally varying disease transmission, which we
will call the surveillance reproduction number. Not affected
by context-specific restrictions, this measure provides a
practical interpretation that can be flexibly applied to many
applications in infectious disease epidemiology. Moreover
this measure which accounts for spatiotemporal hetero-
geneity can robustly estimate the disease strength
simultaneously for all areal units and time periods, and
is ideally suitable for emerging disease surveillance. To
derive the proposed methodology, compartment modeling
is reviewed as the foundation of our development.
There are various forms of compartmental models for in-

fectious diseases (see examples in [5, 14]). One of the early
modeling contributions is the Kermack-McKendrick model
[15], a compartmental model with formulation of flow rates
between disease stages of a population. A special case of
the model is the well-known SIR (susceptible-infectious-re-
covered) model. A SIR model is usually used to describe a
situation where a disease confers immunity against re-
infection, to indicate that the passage of individuals is from
the susceptible class S to the infective class I and to the re-
moved class R. A common SIR model used to describe the
disease at location i and time t can be specified as follows:

dSit
dt

¼ −aitSit

∂
∂t

þ ∂
∂l

� �
Iit lð Þ ¼ aitSit−bitI it lð Þ

dMit

dt
¼

Z ∞

0
bitI it lð Þdl

ð1Þ

where Iit(0) = aitSit. Denote the numbers of susceptible
and recovered (removed) individuals by Sit and Mit. Note
that we use M for the removed to avoid notation
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confusion with the surveillance reproduction number that
will be constructed later. Iit(l) is the number of infected in-
dividuals at time t with the infectious period l. l is the time
elapsed since infection which is the time period of being in-
fectious since the person got infected. bit(l) is the recovery
rate during l. ait is known as disease transmissibility at time
t which is defined later. as ait ¼

R∞
0 citðlÞIitðlÞdl where cit(l)

is the rate of secondary transmission per single infectious
case. Although infectious modeling is usually described in a
preferential sampling setting in which locations are spatially
modeled, one should be aware of possible bias due to the
selective sampling scheme [16, 17]. Alternatively, our meth-
odology is developed in a conditional framework by instead
conditioning the aggregated count on a fixed areal unit
such as county or health district.
The disease dynamic is assumed to follow a Poisson

process such that the incidence rate at which someone
infected in time t − 1 generates new infections in time
step t at location i is μit. The relationship between the
incidence rate μit and the prevalence Iit is assumed to be
Iit(l) = hit(l)μit − l for t − l > 0 where hit(l) > 0, l > 0, is a
proportional constant, and μit = Iit(0). The incidence rate,
the number of susceptible individuals get infected, at lo-
cation i and time t equals aitSit, i.e. μit = aitSit. The trans-
missibility ait ¼

R∞
0 citðlÞIitðlÞdl can be seen as the force

of infection or rate at which susceptible people get in-
fected. For example, this quantity increases if a person
has a respiratory disease and does not perform good hy-
giene during the course of infection or decreases if that
person rests in bed. Then we have that

μit ¼ aitSit ¼
Z ∞

0
cit lð ÞSit lð Þhit lð Þμit−ldl: ð2Þ

Let ζit(l) = cit(l)Sit(l)hit(l). ζit(l) reflects the reproductive
power or effective contact rate between infectious and
susceptible individuals at calendar time t, location i and
infected time l.
To define and develop the surveillance reproduction

number, Rs. it, we further assume that there exist two
sets of functions, Rs, it = { Rs, it }, the set of surveillance
reproduction numbers, and Git ¼ f gitðlÞj

R∞
0 gitðlÞ dl ¼ 1

g , distributional functions over the infectious time at
each location, such that ζit(l) can be decomposed into a
product of those functions, i.e., ζit(l) = Rs, itgit(l). There
are a number of functions in those sets satisfying the
conditions. A non-trivial solution can be defined as

Z ∞

0
ζ it lð Þdl ¼

Z ∞

0
Rs;itgit lð Þdl

¼ Rs;it

Z ∞

0
git lð Þdl ¼ Rs;it : ð3Þ

However, this leads to the same issue as the basic re-
productive number that we usually do not know the

number of susceptible people for a given location and
time which would not be very useful in field settings of
emerging diseases. Hence we define the surveillance
reproduction number in which μit ¼

R∞
0 ζ itðlÞμit−ldl .

That is

μit ¼
Z ∞

0
Rs;itgit lð Þμit−ldl ¼ Rs;it

Z ∞

0
git lð Þμit−ldl ð4Þ

and, therefore, we have that

Rs;it ¼ μitR∞
0 git lð Þμit−ldl

: ð5Þ

Since
R∞
0 gitðlÞ dl ¼ 1, Rs, it can also be interpreted as

the ratio of the current incidence rate to the total
(weighted sum) infectiousness of infected individuals.
Because patient’s information is often collected in a
discrete fashion, then Rs, it can be estimated as Rs;it ≈

μitPL

l¼1
gitðlÞμit−l

where L is the maximum period of infection.

Thus this quantity represents force of infection as the
number of secondary infected cases that each infected
individual would infect averaged over their infectious
lifespan in at location i during time t. However, it is hard
to derive incidence density rates due to the lack of moni-
toring of individual new cases and real exposed popula-
tion required during a given time period and location.

Then we assume that μit ¼ h
0
it I it where h

0
it > 0 is a pro-

portional constant between prevalence and incidence at
calendar time t and location i. Then the surveillance
reproduction number can be expressed as

Rs;it ¼ h
0
it I itR∞

0 git lð Þh
0
it−lI it−ldl

≈
IitR∞

0 git lð ÞIit−ldl
: ð6Þ

Hence, to estimate the surveillance number with
prevalence, the ratio of incidence and prevalence is as-
sumed to be nearly constant over time. This is a limita-
tion of our development. This assumption may not be
appropriate for long duration diseases such as chronic
conditions but rather suitable for infections with rela-
tively short duration.
The proposed methodology has practical advantages

over the traditional basic reproduction number. One of
which is that our method is based on prevalence, not af-
fected by the assumption about susceptibility which is
often difficult or infeasible to know. Another, since our
metric is dynamic (does not depend on the infinite def-
inition), it can be sequentially calculated which is very
suitable for monitoring the disease strength, ideally for
emerging diseases.
To account for spatiotemporal variation and overdis-

persion, μit is modeled to link to a linear predictor con-
sisting of local variables such as environmental and
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demographic factors and space-time random effects to
account for spatiotemporal heterogeneity as log(μit) = α +
Xitβit + ui + vi + λt + δit. The correlated (ui) and uncorre-
lated (vi) spatial components have an intrinsic condi-
tional autoregressive (ICAR) prior distribution and zero
mean Gaussian distribution respectively. In addition,
there are a separate temporal random effect (λt) and a
space-time interaction term (δit) in the linear predictor.
Often the temporal effect is described using an autore-
gressive prior distribution such allowing for a type of
nonparametric temporal effect. Note that this distribu-
tion is a random walk prior distribution with one-unit
lag. For the interaction term, the prior structure is usu-
ally assumed to be distributed as a zero mean Gaussian
distribution. The estimate of the reproduction number is
however also dependent on the choice of the infectious-
ness profile, git(l), which assumes to be Log-Normal dis-
tributed and standardized to sum to one.
Let yit be the number of new cases at location i time t

and the disease transmission is presumably modeled
with a Poisson process. However, the cases are usually
reported at a discrete time such as weekly or monthly.
Assuming the transmissibility remains in the time inter-
val (t, t + 1], the incidence at location i time t is Poisson
distributed with mean μit. Then the full model specifica-
tion is as follows:

yit � Poisson μitð Þ log μitð Þ ¼ αþ X itβit þ ui þ vi þ λt þ δit

α � N 0; τ−1α
� �

; βit � N 0; τ−1β
� �

ui � ICAR τ−1u
� �

; vi � N 0; τ−1v
� �

λt � N λt−1; τ
−1
λ

� �
δit � N 0; τ−1δ

� �
Rs;it ¼ μitPL

l¼1gilμit−l

gil ¼
exp wilð ÞPL

l¼1 exp wilð Þ
wil � N 0; τ−1w

� �
τ−1=2� � Unif 0; 10ð Þ:

ð7Þ

Simulation study
To evaluate our proposed methodology, we simulate
data without covariates in several situations with differ-
ent magnitudes of transmissibility. The simulation map
used as a basis for our evaluation is the district map of
the province of Bangkok, Thailand. This province has 50
districts (i = 1–50) with a reasonably regular spatial dis-
tribution. The simulated incidence are generated for 20
weeks (t = 1–20) in four district groups with different
levels of the reproduction numbers. Figure 1 displays the
maps showing locations of simulated Rs of each district
group at weeks 5, 10, 15, and 20. The simulated inci-
dence of each district group with different levels of Rs is

shown in Fig. 2 in which each dot represents a simulated
value from a given simulation set. The first group (mid-
dle region in Fig. 1) is simulated with increasing magni-
tudes of transmission as Rs, it = 0.2 + (t × 0.15). The Rs, it

is assumed to be increasing every time period by the size
of 0.15. Then incidence with an exponentially increase is
generated in this scenario to represent regions with an
outbreak (left panel in Fig. 2). The second district group
(western region in Fig. 1) is assumed to have decreasing
magnitudes simulated as Rs, it = 4.0 − (t × 0.2). As can be
seen in Fig. 2 (second panel from the left), the incidence
in this scenario increases at the beginning due to strongly
positive force of infection but will be decreasing after-
wards. In the third scenario (eastern region in Fig. 1), Rs, it
is assumed to have the size of 1.5 until week 12 and then
reduced to 0.8 afterwards. This scenario represents the
situation where an effective intervention is introduced to
control an outbreak. The rest of the districts are assumed
to have a constant low infection rate at Rs, it = 0.8 over the
20 time periods. To sample the discrete weight wil is
drawn from a normal distribution with mean of 1.5 with
standard deviation of one. The infectious time, L, of 3
weeks is set to generate the incidence.
We generate 100 simulated incidence datasets starting

with the number of newly infected people as 2, 1, and 6
for the first 3 weeks. For weeks t > 3, the new cases yit
are sampled from a Poisson distribution for each loca-
tion with mean μit ¼ Rs;it

P3
l¼1gilμit−l . That is μi1 ¼ 2; μi2

¼ 1; μi3 ¼ 6; μit ¼ Rs;it
Pt

l¼1gilμit−l; t > 3 . The infectious
time interval is also evaluated in the simulation study to
examine the effect of different window sizes. We investi-
gate the sensitivity of the window choice by assuming
L = 2, 3 and 4 weeks in the simulation study because the
infectious period of arthropod-borne diseases such as
Dengue and Zika usually lasts for a couple of weeks [18].
The results displayed are from posterior sampling car-
ried out on WinBUGS, user-friendly software, using
MCMC with an initial burn-in period of 100,000 itera-
tions to assess the convergence of MCMC chains.
The simulated and corresponding estimated Rs for

each district group with different infectious times are
shown in Fig. 3. Our methodology allows estimating a
constant surveillance reproduction number used for
simulation in scenario 4. The constant changes in Rs are
detected in both increasing (scenario 1) and decreasing
(scenario 2) force of infection. It also can effectively
identify a jump in transmissibility (scenario 3). Figure 4
(top row) displays the mean squared error (MSE) of the
estimated surveillance numbers in all scenarios and the
correct infectious time, L = 3, yields the most precise es-
timate (the least MSE).
The estimate of the surveillance number also depends

on the choice of the time window size L. However, it
may not be feasible to know the true infection time in
real situations. Then we examine a loss function metric
which employs the predictive distribution to guide
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selecting the infectious profile. A commonly used loss
function is the mean squared predictive error (MSPE) [19]
comparing the observed data to the predicted values from a
fitted model. However we are interested in the loss function
in estimation of Rs . We then propose another predictive
loss function, the mean squared predictive reproduction
error (MSPRE), to evaluate the model predictive adequacy
in terms of reproduction number defined as.

MSPREit ¼
PN

n¼1ðRy
s;itn−R

ypred

s;itnÞ
2
=N , where Ry

s;itn

¼ yitPL

l¼1
ginlyit−l

, Rypred

s;itn ¼ ypredintPL

l¼1
ginly

pred
int−l

, N is the size of poster-

ior sampler and ypreditn is generated from its posterior pre-
dictive distribution at the n th posterior sampling after
burn-in period. Figure 4 (bottom row) presents the
MSPRE for district groups corresponding to different
choices of infection time window. We can see the infec-
tious time of 3 weeks has both the least MSE and
MSPRE. Thus this metric can provide guidance on
which the time windows to consider in practice. The use
of MSPRE will also be demonstrated in a case study pro-
vided later. It should be noted that the time elapsed
since infection, l, could vary by individual. However we
model the aggregated count conditional on spatial units
instead of at individual level. Then the infectious time
would be averaged over an area. Given the sampling
framework it is reasonable to assume a constant infec-
tious time for the population. Nonetheless it is also pos-
sible that the infectious time has a spatiotemporal
distribution over the study area which is perhaps
dependent on environmental or demographic variables.

Then the covariates should be included in the model
when available as well.
As presented we have developed a robust methodology

to estimate disease transmissibility varying across locations
and time periods. Our method allows for computational
flexibility not affected by conventional restrictions which
generally are difficult to apply in real situations. However
due to very limited knowledge when new emerging infec-
tion initially occurs, it is extremely challenging for policy
makers to make decision based upon enormous uncer-
tainty. Therefore it is essential to consider the analysis inte-
grating relevant information streams in order to develop
the best disease-management plans possible. Hence in the
next section we extend the univariate framework to allow
for incorporating knowledge from related diseases.

Multivariate surveillance reproduction number
Limitations in availability of disease information constrain
public health efforts to prevent and control outbreaks. Thus
utilizing knowledge, we have from other sources such as re-
lated diseases can principally help improving the surveil-
lance system. Dengue is one of the major arthropod-borne
diseases in tropical and sub-tropical regions. The virus be-
longs to the genus Flavivirus and is primarily transmitted
by Aedes mosquitoes as well as Zika. Similarity in viro-
logical characteristics and identification as etiologic agents
of the similar illness and their co-infection suggest that
these 2 Aedes mosquito-transmitted viruses can be circulat-
ing in the same area confirming the underlying potential
for Zika to have a similar spreading pattern to Dengue [20,
21]. Therefore, in this section we develop a multivariate
transmissibility measure allowing for transferring of

Fig. 1 Bangkok maps of simulated Rs during weeks 5, 10, 15, and 20 (left-right)

Fig. 2 Simulated incidence of districts in group 1 (increasing Rs), group 2 (decreasing Rs), group 3 (with a jump) and groups 4 (constant Rs = 0.8)
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spatiotemporal knowledge of these two flaviviruses in order
to maximize the surveillance ability which was not consid-
ered in previous literature.
In the multi-disease surveillance setting, spatial data on

multiple diseases are observed at each time period. We

assume that yit and ysit are the number of new Zika and
Dengue (with superscript) cases which are Poisson distrib-
uted with means μit and μsit for each area i and time t. Using
a logarithmic link function, α and αs are the overall inter-
cepts, and Xitβit and Xs

itβ
s
it are the covariate predictors for

Fig. 3 Plots of the posterior estimated Rs of all district groups with infectious periods of 2 (top), 3 (middle), and 4 (bottom) weeks from all
simulated datasets. The black lines show the estimated mean with dash lines showing the 95% credible interval. The grey lines display posterior
realizations and the red lines are the true Rs used for simulation

Fig. 4 Bar plots of MSE and MSPRE of the estimated and predicted reproduction number with different infectious times of four district groups
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both diseases. In general, once multiple diseases are intro-
duced into an analysis there is a need to consider relations
between the diseases. This can be achieved in various ways.
A basic approach to this is to consider cross-correlation
between the diseases [22, 23]. There is a numerous litera-
ture in the specification of cross-disease modeling using
Gaussian process [24]. The multivariate conditional autore-
gressive (MCAR) model [25] and the shared component
model [26] are the two primary approaches to model dis-
ease risk correlations across both spatial units and diseases.
Here we use an extended version of the convolution model
[27] to incorporate diseases’ correlation using multivariate
spatially-correlated, ui and usi , and non-correlated, vi and vsi ,
random effects to account for unobserved confounders and
spatial variation. To capture the temporal trend a multivari-
ate autoregressive prior distribution, which allows for shar-
ing the temporal information between the diseases, is
assumed for the temporal random effects, λt and λst . In
addition, there is a space-time interaction term for each dis-
ease, δit and δsit , which are assumed to have a Gaussian
prior distribution. Finally infectivity profiles gil and gsil are
jointly approximated by a standardized multivariate Log-
Normal distribution. A multivariate extension of the
reproduction number, Rms, it, incorporating information
from both diseases can be defined as Rms;it ¼ μitR ∞

0
gitðlÞμit−ldl

≈

μitPL

l¼1
gilμit−l

and Rs
ms;it ¼ μsitR ∞

0
gsitðlÞμsit−ldl

≈ μsitPL

l¼1
gsilμ

s
it−l

. Then full

specification of the joint modeling of Zika and Dengue is
following:

yit � Poisson μitð Þ; ysit � Poisson μsit
� �

log μitð Þ ¼ αþ Xitβit þ ui þ vi þ λt þ δit
log usit

� � ¼ αs þ Xs
itβ

s
it þ usi þ vsi þ λst þ δsit

α∼Ν 0; τ−1α
� �

; αs � N 0; τ−1αs
� �

βit � N 0; τ−1β
� �

; βsit � N 0; τ−1βs
� �

ui
usi

� 	
� MCAR

X−1

u

� �
;

vi
vsi

� 	
� MVN

0
0
;
X−1

v

� �

λt
λst

� 	
� MVN

λt−1
λst−1

;
X−1

λ

� �

δit � N 0; τ−1δ
� �

; δsit � N 0; τ−1δs
� �

Rms;it ¼ μitPL
l¼1gilμit−l

;Rs
ms;it ¼

μsitPL
l¼1g

s
ilμ

s
it−l

gil ¼
exp wilð ÞPL

l¼1 exp wilð Þ g
s
il ¼

exp ws
il

� �
PL

l¼1 exp ws
il

� �
wil

ws
il

� 	
� MVN

0
0
;Σ−1

w

� �

τ−1=2� � Unif 0; 10ð Þ:
ð8Þ

Results
Application to dengue and Zika virus surveillance
activities in Thailand
Dengue is endemic in Thailand with peak transmission
rates occur in the rainy season, between June and Sep-
tember, all across the country, but particularly in

northeastern Thailand. Zika was first reported in
Thailand in 2012, and the Bangkok Metropolitan
Authority has been conducting regular screen tests on
its residents since then. To demonstrate performance of
the proposed integrative method we apply the multivari-
ate surveillance number, Rms, to the Dengue and Zika
prevalence in Thailand. The cases of both diseases were
from the province of Chanthaburi consisting of 10
health districts during July 10th until August 27th 2016,
total of 7 weeks. The information of case patients was re-
ported by the public hospitals to surveillance center.
Note that the dengue patients included in this analysis
were both who diagnosed with Dengue fever (DF) and
Dengue hemorrhagic fever (DHF). The results displayed
are based on the approximation of the surveillance
number developed using prevalence in (6) and posterior
sampling carried out using WinBUGS software an initial
burn-in period of 100,000 iterations to assess the con-
vergence of MCMC chains.
The estimates of the surveillance numbers are ex-

pected to depend on the choice of the size of infectious
time l. The Aedes aegypti mosquito is the primary vector
of Dengue. The virus is transmitted to humans through
the bites of infected female mosquitoes. After virus incu-
bation for 4–10 days, an infected mosquito is capable of
transmitting the virus for the rest of its life. Infected
symptomatic or asymptomatic humans are the main car-
riers and multipliers of the virus, serving as a source of
the virus for uninfected mosquitoes. Patients who are
already infected with the dengue virus can transmit the
infection (for 4–5 days; maximum 12 days) via Aedes
mosquitoes after their first symptoms appear. Zika is
usually milder with symptoms lasting for several days to
a week. People usually don’t get sick enough to go to the
hospital, and they very rarely die of Zika [18].
MSPRE is applied to guide on the choice of infectious

time for the model. Table 1 displays the values of
MSPRE of both diseases fitted with different sizes of the
infectious times. The window size of 2 weeks fitted with
the univariate model yields the least MSPRE for Zika
and Dengue. Though based on the clinical manifestation
point of view a window size less than 2 weeks may be
possible for Zika, the result suggested by MSPRE is sens-
ible combining with knowledge from epidemiological
perspective that incubation period and virus lifespan in a

Table 1 MSPRE of Dengue and Zika fitted with the univariate
model for different time windows

Infectious time (weeks)

2 3 4

Dengue 0.6814 0.6992 0.7018

Zika 0.2693 0.2998 0.3110
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mosquito can prolong the infectious period. Nonetheless
we have only weekly data and would recommend using a
finer temporal scale if appropriate when such data are
available. To evaluate the performance, we compare the
univariate and multivariate models weekly so that both
models would have the same set of data. Based on the
guidance from MSPRE and information discussed
earlier, we thus choose the size of infectious time to be
2 weeks for both diseases in the analysis. Because the
infectious times are assumed to be 2 weeks, for simpli-
city, we assume the weights of serial intervals to have a
Beta (1,1) prior distribution instead of standardized log-
normal distribution. All covariance matrices are assumed

to be a fixed matrix of
100 0
0 100

� 	
which however

could also be modeled with a Wishart distribution as

well.
Table 2 presents DIC values obtained from the ana-

lysis with both the univariate and multivariate models
during weeks 4–7. The DIC of the multivariate model is
less than the ones from each disease fitted separately by
the univariate model across all time periods. Moreover,
pD, which can be seen as model complexity, is also
much smaller in the case of multivariate model. This
suggests that pooling information from both diseases in
the analysis essentially decreases variability in model fit-
ting and provides a much better description of the
spreading pattern of Zika and Dengue.
The estimated Rs and Rms describe the pattern of

Dengue transmission similarly. However Rms (bottom
row, the second column in Fig. 5) of Dengue, which also
infuses information of Zika pattern in the integrative
platform, provides a smaller transmission rate than Rs

(middle row, the second column in Fig. 5) at a district in
the south during the week of August 7th – August 13th.
This is because during the same week the number of
Zika incidence at that district (the first row, second col-
umn in Fig. 6) was decreasing from the previous week
(the first row, first column in Fig. 6). On the other hand,
during the week of August 7th – August 13th Dengue
incidence was increasing from the previous week. Hence
the Rms of Zika estimated from the multivariate model
suggests a higher estimate of the disease strength than
from the univariate model. These results demonstrate
that the proposed integrated model allows for

transferring transmission knowledge between the related
diseases to optimize surveillance ability.

Discussion
A new emerging disease can occur in one place and have
the potential to spread globally. This is an important
challenge in terms of emergency preparation requiring
the operation of surveillance systems. A traditional
concept to study the dynamic of infectious diseases is
the basic reproduction number. However, the intuitive
appeal of its theoretical interpretation can outlast the
appropriateness of situations if applied incautiously. So
it is remarkably crucial to be aware of their caveats when
adopting that measure. Otherwise, it could mislead to
the inappropriate backbone of disease-management
policy. Alternatively, we present a robust and flexible
methodology for estimating spatiotemporally varying
reproduction numbers. Withstanding the issues of
context-specific assumptions, our method provides more
practical advantages and can be used to simultaneously
estimate disease transmissibility for each location and
time within a user-friendly environment for real-time
assessment of new emerging diseases.
To evaluate our method, we simulate data in several

situations with different magnitudes of transmission and
sizes of infectious period. The simulation results suggest
that the proposed method allows robust estimation of
the surveillance reproduction number used for simula-
tion across simulated scenarios. Though from the simu-
lation study the method would not suffer much from the
infection window size, MSPRE may be helpful in provid-
ing guidance on the choice of infectious period in prac-
tice. Due to limited information when new emerging
infection newly occurs, the univariate framework is
extended to allow for incorporating knowledge from
related diseases in order to maximize the surveillance
capability. A case study is provided of an integrative
application of Dengue and Zika surveillance in Thailand.
A significant portion of arbovirus incidence (eg. ZIKA)

is underestimated due to asymptomatic infection without
presenting any clinical symptoms [28]. Nevertheless, the
contribution of asymptomatic reservoirs to the overall dis-
ease burden has not been well quantified, which intro-
duces considerable uncertainty into modeling studies of
disease transmission dynamics and control strategies.
Policy and practice on case detection and reporting of

Table 2 DIC (pD) values for Dengue and Zika fitted with univariate and multivariate models during weeks 4–7

Week 4 Week 5 Week 6 Week 7

Univariate Dengue 204.4 (78.25) 217.01 (72.08) 232.45 (73.82) 230.09 (62.63)

Zika 103.1 (37.62) 247.3 (108.44) 519.8 (241.21) 1505.6 (731.1)

Multivariate Dengue 85.35 (15.91) 119.65 (19.78) 134.98 (21.79) 155.67 (23.52)

Zika 52.16 (7.39) 62.64 (10.1) 79.37 (13.42) 86.02 (14.47)
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Dengue and Zika is a critical factor due to the nature
of diseases that have high proportion of asymptomatic
infection. Therefore novel surveillance tools, such as
integrated surveillance, should be developed and
applied to improve estimates of disease incidence
especially asymptomatic infections such as Dengue
and Zika.
The significance of our development lies in the ad-

vantages of multivariate surveillance in the ability to
borrow strength across diseases and to allow condi-
tioning of one on others. When applying the multi-
variate framework, the relevant diseases should
epidemiologically and clinically sound. Studies indi-
cate the underlying possibility for Zika to have a
similar spreading pattern to Dengue [2, 20]. We
hence extend our method to allow for integrating re-
lated diseases’ information and also demonstrate its

performance in the example of Dengue and Zika
surveillance in Thailand. The data example shows
that combining both diseases in an integrated ana-
lysis essentially decreases variability of model fitting.
The result suggests that the proposed integrative
platform which allows for transferring transmission
knowledge between the related diseases sharing simi-
lar etiology not only can enhance the estimation of
transmissibility but also helps explaining the spread-
ing pattern of Zika and Dengue much better. This is
a significant importance of the proposed multi-
disease measure in improving surveillance ability.
Though the proposed method demonstrates robust

performance, it should be noted that those data
present a lot of both clinical and epidemiological
complexity. In this work we prevalence information
is assumed for the model due to difficulties of

Fig. 5 Maps of weekly Dengue incidence (top), Rs (middle), and Rms (bottom) in Chantaburi during July 31st – August 27th 2016
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disease investigation which implies that the ratio of
incidence and prevalence is nearly constant over
time. This is a limitation of our development. This
assumption may not be appropriate for chronic dis-
eases but rather suitable for infections with relatively
short duration. There is a further need for studies of
virus circulation persistence and the ecological fac-
tors including characterizing immunological cross-
reacting which could shorten or prolong the epi-
demic [29]. Across both clinical and ecological stud-
ies, it is also important to evaluate the effect of host,
viral, and vector relationships for fuller understand-
ing of the disease mechanism [18]. However, the
proposed methodology can be served as a flexible
platform to incorporate those potential epidemiologic
and ecologic determinants that drive the disease risk
as they are available.

Conclusions
New emerging diseases are public health crises in
which policy makers have had to make decisions in
the presence of massive uncertainty. As presented the
proposed methodology is robust in several simulated
scenarios of transmission force with computing flexi-
bility and practical benefits. Thus this development is
ideally suitable for surveillance applications of new
emerging diseases such as Zika. To further prevent
and control new emerging infection, we must have a
fuller understand the modes of transmission which
are currently lacking. In such context, it is natural to
look for strategies that mirror those applied for rele-
vant diseases. By transferring information from dis-
eases sharing the similar etiology such as Dengue, our
multivariate framework can successfully integrate
knowledge and hence improve the surveillance system

Fig. 6 Maps of weekly Zika incidence (top), Rs (middle), and Rms (bottom) in Chantaburi during July 31st – August 27th 2016
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effectively. Therefore, in current situations whereas
there are threats from new infection, a robust and
flexible platform is thus essentially needed to be read-
ily prepared in order to rapidly gain an understanding
of the new disease transmission mechanism to coun-
ter the local and global health concerns.

Abbreviations
DF: Dengue fever; DHF: Dengue hemorrhagic fever; DIC: Deviance
Information Criterion; ICAR: Intrinsic Conditional Autoregressive model;
MCAR: Multivariate Conditional Autoregressive model; MCMC: Markov chain
Monte Carlo; MSE: Mean Squared Error; MSPE: Mean Squared Predictive Error;
MVN: Multivariate Normal distribution; R0: Basic reproduction number;
Rms: Multivariate surveillance reproduction number; Rs: Surveillance
reproduction number; WHO: World Health Organization

Acknowledgements
We would like to thank Dr. Saranath Lawpoolsri for assistance with the
epidemiological interpretation. We are also thankful for constructive
suggestions from reviewers to improve our manuscript.

Authors’ contributions
All authors contributed to the conceptual design of the study. CR developed
the statistical methodology with critical input from AL and SI. CR completed
all statistical analyses and drafted the manuscript. SI was responsible for
clinical revision and improvements of the manuscript. CR and AL contributed
to the manuscript editing. All authors have read and approved the final
manuscript.

Funding
This research was supported by the new researcher grant of Mahidol
University and ICTM grant from the Faculty of Tropical Medicine. The
funding body had no role in the design or analysis of the study,
interpretation of results, or writing of the manuscript.

Availability of data and materials
The data that support the findings of this study were obtained from the Thai
Bureau of Epidemiology, but restrictions apply to the availability of these
data, which were used with permission for the current study, and are
therefore not publicly available. However, data may be available from the
authors upon reasonable request and with permission of the Thai Bureau of
Epidemiology.

Ethics approval and consent to participate
The research was approved by the ethics committee of the Faculty of
Tropical Medicine, Mahidol University.

Consent for publication
Not Applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol
University, Ratchathewi, Bangkok 10400, Thailand. 2Mahidol-Oxford Tropical
Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University,
Bangkok 10400, Thailand. 3Department of Public Health Sciences, Medical
University of South Carolina, Charleston, SC 29425, USA. 4Department of
Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand.

Received: 17 August 2018 Accepted: 12 September 2019

References
1. Lessler J, Chaisson LH, Kucirka LM, Bi Q, Grantz K, Salje H, Cummings DA.

Assessing the global threat from Zika virus. Science. 2016;353(6300).
2. Ferguson NM, et al. Countering the Zika epidemic in Latin America. Science.

2016;353(6297):353–4.

3. Diekmann O, Heesterbeek JAP. Mathematical epidemiology of infectious
diseases: model building, analysis, and interpretation. Chichester: Wiley; 2000.

4. Dietz K. The estimation of the basic reproduction number for infectious
diseases. Stat Methods Med Res. 1993;2(1):23–41.

5. Brauer F. Compartmental models in epidemiology. In Mathematical
epidemiology. Berlin, Heidelberg: Springer; 2008. (pp. 19-79).

6. Li J, Blakeley D, Smith RJ. The Failure of R (0). In: Computational and
mathematical methods in medicine, 2011; 2011. p. 527610.

7. Heffernan JM, Smith RJ, Wahl LM. Perspectives on the basic reproductive
ratio. J R Soc Interface. 2005;2(4):281–93.

8. Fraser C. Estimating individual and household reproduction numbers in an
emerging epidemic. PLoS One. 2007;2(8):e758.

9. Cori A, et al. A new framework and software to estimate time-varying
reproduction numbers during epidemics. Am J Epidemiol. 2013;178(9):1505–12.

10. Keeling MJ. The effects of local spatial structure on epidemiological
invasions. Proc R Soc Lond B Biol Sci. 1999;266(1421):859–67.

11. Chowell G, et al. Estimation of the reproduction number of dengue fever
from spatial epidemic data. Math Biosci. 2007;208(2):571–89.

12. Nishiura H. Correcting the actual reproduction number: a simple method to
estimate R0 from early epidemic growth data. Int J Environ Res Public
Health. 2010;7(1):291–302.

13. Roberts M. The pluses and minuses of 0. J R Soc Interface. 2007;4(16):949–61.
14. Hethcote HW. The mathematics of infectious diseases. SIAM Rev. 2000;42(4):

599–653.
15. Kermack WO, McKendrick AG. A contribution to the mathematical theory of

epidemics. Proceedings of the royal society of london. Series A, Containing
papers of a mathematical and physical character. 1927;115(772):700–21.

16. Diggle PJ, Menezes R, Su Tl. Geostatistical inference under preferential
sampling. J R Stat Soc Ser C Appl Stat. 2010;59(2):191–232.

17. Gelfand AE, Sahu SK, Holland DM. On the effect of preferential sampling in
spatial prediction. Environmetrics. 2012;23(7):565–78.

18. Hamel R, Liégeois F, Wichit S, Pompon J, Diop F, Talignani L, Missé D. Zika
virus: epidemiology, clinical features and host-virus interactions. Microbes
and Infection. 2016;18(7-8):441-9.

19. Gelfand AE, Ghosh SK. Model choice: a minimum posterior predictive loss
approach. Biometrika. 1998;85(1):1–11.

20. Dupont-Rouzeyrol M, et al. Co-infection with Zika and dengue viruses in 2
patients, New Caledonia, 2014. Emerg Infect Dis. 2015;21(2):381–2.

21. Cardoso CW, et al. Outbreak of exanthematous illness associated with Zika,
chikungunya, and dengue viruses, Salvador, Brazil. Emerg Infect Dis. 2015;
21(12):2274.

22. Lawson A. Statistical Methods in Spatial Epidemiology. Somerset: Wiley; 2013.
23. Lawson A, et al. Handbook of Spatial Epidemiology. Boca Raton (Fla.):

Chapman & Hall/CRC; 2016.
24. Banerjee S, Carlin B, Gelfand A. Hierarchical modeling and analysis for spatial

data. Boca Raton (Fla.): Chapman & Hall/CRC.; 2015.
25. Gelfand AE, Vounatsou P. Proper multivariate conditional autoregressive

models for spatial data analysis. Biostatistics. 2003;4(1):11–5.
26. Knorr-Held L, Best NG. A shared component model for detecting joint and

selective clustering of two diseases. J R Stat Soc A Stat Soc. 2001;164(1):73–85.
27. Besag J, York J, Mollié A. Bayesian image restoration, with two applications

in spatial statistics. Ann Inst Stat Math. 1991;43(1):1–20.
28. Moghadas SM, et al. Asymptomatic transmission and the dynamics of Zika

infection. Sci Rep. 2017;7(1):5829.
29. Dejnirattisai W, et al. Dengue virus sero-cross-reactivity drives antibody-

dependent enhancement of infection with zika virus. Nat Immunol.
2016;17(9):1102–8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Rotejanaprasert et al. BMC Medical Research Methodology          (2019) 19:200 Page 11 of 11


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Spatiotemporal measure of disease transmission
	Simulation study
	Multivariate surveillance reproduction number

	Results
	Application to dengue and Zika virus surveillance activities in Thailand

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

